
Walking toward moving goalposts:
agile management for evolving systems

Richard A. Golding and Theodore M. Wong
IBM Almaden Research Center, San Jose, CA

Abstract

Much of the practical work in the autonomic manage-
ment of storage systems has taken the “bolt-on” approach:
take existing systems and add a separate management sys-
tem on the side. While this approach can improve legacy
systems, it has several problems, including scaling to het-
erogeneous and large systems and maintaining consistency
between the system and the management model. We argue
for a different approach, where autonomic management is
woven throughout a system, as in the K2 distributed storage
system that we are implementing. This distributes responsi-
bility for management operations over all nodes according
to ability and security, and stores management state as part
of the entities being managed. Decision algorithms set gen-
eral configuration goals and then let many system compo-
nents work in parallel to move toward the goals.

1. Introduction

Most storage system management applications are built
as bolt-on additions to existing systems. For example, IBM
TPC [9], EMC ControlCenter [5], and HP Labs Minerva [2]
all provide management for existing storage systems. All
these applications have improved the manageability of ex-
isting systems, and have introduced elements of autonomic
management. They generally work by building a model of
the system in an external application, applying monitoring
information to that model, and using the model for analyz-
ing and planning how to react to events in the system (the
MAPE loop).

The model-based, bolt-on approach is not working well
in these products, even though they are on the market and
providing useful tools. The deficiencies arise from cen-
tralization and separation. The systems cited do not scale
with the size of the system being managed; instead, they
build a single centralized model of the entire system, and
run decision-making algorithms inside the management ap-
plication. Further, separating the management application
from the system allows inconsistency between the two, and

makes the system vulnerable to management application
failure as well as to internal failure. A separate manage-
ment application has longer latency for responding to sys-
tem events than mechanisms built into the system. While
management applications built in a more distributed fashion
are possible, most systems on the market are not structured
that way.

We are exploring an alternative approach in K2, the dis-
tributed storage system that we are building. K2 has no
central authority that defines the system. Instead, it is struc-
tured as a federation of semi-independent systems, which
we expect to lead to a robust system that can adapt quickly
to changes in requirements or environment. This model
has worked well for existing Internet services, including
the Web, DNS, and some grid applications, where different
pieces of the service are provided by different organizations.

As in biological nervous systems, we weave autonomic
functions throughout the system with many components
working in parallel to keep the system going. This approach
scales the resources used for management with the size of
the system being managed. By integrating management into
the system, there is no possibility of a model becoming in-
consistent or failing separately. Integration also ensures that
components close to a problem detect and resolve problems
quickly.

The self-management mechanisms in the K2 prototype
are concerned only with resource allocation, which provides
a clean interface on which to layer higher-level applica-
tion and user management. The system provides different
users with separate pools, each of which has resource re-
quirements. The system treats resource allocation as a con-
strained optimization problem, working to ensure that each
pool is provisioned to meet the requirements, and that load
is balanced between storage servers.

K2 focuses on an incremental, online solution in which
each pool is managed separately as much as possible. A
pool is given a feasible resource assignment when first cre-
ated, and then the system incrementally improves the as-
signment over time as more information becomes avail-
able about actual resource usage. This approach is similar
to many optimization heuristics that start with an easily-



user 
application

storage pool

allocation pool
storage server

requirements
capacity

performance
reliability

virtual object
(e.g. file)

requirements 
+ usage

physical 
object

resource
usage

requirements 
+ usage

physical 
object

uses

backed 
by

placed 
on

resource
usage

Figure 1. Components in the K2 storage pool
mechanism.

computed feasible solution and then incrementally “hill-
climb” toward better solutions. In those circumstances
where one pool cannot be managed by itself – such as recov-
ering from a failure that affects multiple pools – the affected
pools coordinate to make a more global decision.

In this paper we present some of the key components
of the K2 prototype that map user requirements onto spe-
cific resource allocations, decide how to react to changes in
requirements or the storage server population, and migrate
data to effect the decisions.

2. System model

K2 implements distributed storage over a cluster of
small, self-contained storage servers that presents an ab-
straction of storage pools containing virtual objects to
higher-level applications (Figure 1). Storage pools are vir-
tual containers with a set of capacity (in bytes), performance
(in I/O rate), and reliability (in mean time to data loss) re-
quirements. Capacity and performance requirements repre-
sent resources reserved for the pool. Reliability determines
the redundancy codes acceptable for storing data in the
pool. Virtual objects are byte containers of variable length,
somewhat in the style of the SCSI OSD storage model [10].

A storage pool is backed by a set of physical contain-
ers called allocation pools (APs) on a set of storage servers.
Like a storage pool, an AP specifies requirements on capac-
ity and performance resources; the aggregate of a set of AP
requirements equals their parent pool’s requirement. K2 as-
signs each AP in a pool to a different server, but may assign
APs of multiple pools to a single server.

A virtual object is backed by a set of physical objects in
a set of APs, analogous to how storage pools are backed on
storage servers by APs. Data for one virtual object is spread
across its physical objects according to a redundancy code
determined by the storage pool’s reliability requirement.

Each server in a K2 cluster contains a CPU and disks.

We expect that the population of servers in an operational
K2 cluster will be large (tens of thousands), heterogeneous
(servers will have different CPUs or disk capacities), and
unstable (additions, removals, and failures of servers will
be relatively frequent). Each server knows its capacity and
performance resource availability.

K2 provides a reliable platform for autonomic manage-
ment by electing a manager for each storage pool, which
monitors and analyzes the state of the pool and coordinates
responses to state changes. The APs in a pool execute a
leader-follower election protocol [7] to spawn a pool man-
ager on some server. Once elected, the manager monitors
the APs for failures or resource usage changes; when de-
tected, the manager runs a decision algorithm (§3) to de-
termine the response. Each AP maintains a persistent copy
of the federation state (such as membership, AP to storage
server allocation bindings, and virtual object layout meta-
data), while the manager may cache a transient copy. After
making a configuration decision, the manager pushes the
change out consistently to the APs using a timestamp-based
transaction protocol [3]. If physical object data needs to mi-
grated from one AP to another, the manager uses the trans-
action protocol to read and write the objects. The trans-
action protocol ensures that the migration can proceed in
parallel with client accesses.

By giving each pool its own manager, K2 sidesteps many
of the scalability problems that arise when using central-
ized managers to provide equivalent services. In particular,
the effects of the failure of a storage server only propagate
through to any hosted APs and their parent pools; other APs
and pools generally remain unaffected.

The AP requirements act as a contract between manager
and managed, simplifying the pool manager by delegating
the details to each AP. Each storage server manages capac-
ity and performance resource usage to ensure that it meets
the requirements of all hosted APs, and that I/O streams
to each AP do not interfere with each other. In particular, it
shapes the I/O traffic [15] to fulfill the performance reserves
of all APs, and shares any remaining performance resources
fairly among APs.

Finally, K2 creates two special storage pools for internal
purposes. The spare reserve sets aside sufficient resources
to cover expected failures – typically a few storage servers’
worth. Since we expect that failure and imbalance are nor-
mal conditions in a large system, the management reserve
sets aside a fraction of each server’s performance resources
for use when migrating or recovering data (§5). Each of
these special pools is represented by a set of APs and elects
a manager, just like other pools.

This model for distributed storage is similar to other sys-
tems that use virtualized objects, including the UCSC Swift
file system [4], the Panasas ActiveScale file system [12],
and the CMU Self-*/Ursa Minor system [1, 6].

2



K2 is closest in spirit to Ursa Minor in that we are both
exploring self-management that is integrated into a storage
system’s design, and in particular both set up management
for a set of workers (APs). There are three major differ-
ences. First, the Self-* project aims higher than K2: it po-
tentially includes all aspects of system tuning, while K2 is
focused just on resource provisioning given a set of require-
ments. The resource management interface in a K2 stor-
age pool could fit into the Self-* vision as the language that
a second-level manager uses to give instructions to a first-
level manager. Second, while the Self-* vision includes a
hierarchy of managers, the Ursa Minor prototype to date
does not yet implement the vision of hierarchical manage-
ment and instead has focused on implementing versatile, re-
liable object storage. In contrast, the K2 implementation
to date focuses more on management and less on the ac-
tual storage. Finally, there is a difference in the philosophy
behind the designs. Self-* and Ursa Minor are designed
around a top-down system model, where the system is de-
fined by a single hierarchy of managers and workers. This
philosophy tends to produce a system familiar to those who
expect an appliance, which is well-suited to use by a single
organization. K2, on the other hand, is designed around a
bottom-up philosophy, where the “system” is defined by a
federation of many semi-independent systems in the form
of pools and servers. They are likely owned and used by
many different users, and form collective decision-making
mechanisms at need. This approach produces a system in
the style of common Internet services such as the Web or
DNS, which are intended for use by a large, diverse com-
munity.

3. Decision algorithms

A pool’s manager is responsible for computing the re-
source configuration for the pool’s APs. The configura-
tion must respect the capacity, performance, and reliabil-
ity requirements on the storage pool, and should try to bal-
ance usage across APs and unused resources across storage
servers. A new pool is configured based on its declared re-
quirements; from time to time, the manager recomputes the
configuration based on actual usage to try to balance usage.
We chose to measure balance as the variance in unused re-
source in the system, with low variance being better. When
rebalancing, the manager will only use the new configura-
tion if it decreases this variance – that is, if it moves the total
system toward a better configuration.

In K2, we formulate the configuration decision pro-
cess as a constrained (bin-packing) optimization problem,
as others have done [2], but focus on online, incremental
heuristics. We have developed the MinDot algorithm, which
is based on the vector dot product model from the Toy-
oda heuristic [14]. MinDot is an online algorithm, where

a pool manager sends a vector representing total required
resources to the storage servers it can use, and each server
returns the dot product of the requirements with its available
resources. The dot product can be treated as the server’s bid
for storing part of the pool. MinDot determines what frac-
tion of the storage pool should be assigned to each stor-
age server in order to minimize the sum of dot products
across all used servers (hence the name of the algorithm),
subject to constraints. This can be done as a linear, greedy
assignment. This approach tends to bias usage toward the
servers that have the most unused resources and balances
usage across multiple dimensions (such as capacity and per-
formance).

The pool’s reliability requirements generate the most
constraints. A particular level of reliability requires at least
n-way redundancy, and so no more than 1/n of any re-
source can go on any one server; similarly, there is an up-
per bound on the number of servers that can be involved
before reliability drops below the required level. Using an
analytic model, the manager translates the MTTDL require-
ment into these bounds and the kind of redundancy code to
be used [13]. The model currently does not cope with het-
erogeneous servers and changing estimates of server relia-
bility, which are topics for future work.

This approach meets our goals of independent and ef-
ficient decision-making: each manager can find available
resources on its own. In a large system, many managers
will be working in parallel to improve system configura-
tion. If they make concurrent, conflicting decisions, one or
more managers will fail to allocate the resources they want,
and will retry their decision-making taking the changed re-
source availability into account. This approach is simple but
not formally live; we are looking into more robust mecha-
nisms, perhaps based on the mechanism we use in manager
election.

There are several other areas for future improvement.
While the online bin-packing algorithm appears to work
well in practice, we do not have a formal analysis of how far
the on-line variant of the heuristic is from batch heuristics.
The algorithm we describe also ignores complex workload
specifications; for example, correlation between workloads
or workload behaviors such as sequentiality. Our experi-
ence is that users are rarely able to specify these behaviors
manually, and so we are hoping that other research projects
will generate tools that learn such facts from observation,
after which we expect to incorporate them into our decision
algorithm.

There is one significant exception to the decision-making
approach just discussed: there are failure cases where each
pool manager cannot act independently. Instead, multiple
pools must jointly compute a sequence of pool reconfigu-
rations that will restore redundancy. The spare reserve (§2)
ensures that there will be enough resources in the system in

3



general to handle some number of storage server failures;
however, sometimes the spare resources may not be on the
right servers. For example, some pool that has suffered a
failure may have its APs on the same servers as all the spare
reserve, and so to meet reliability constraints spare space
must be generated on some other server by migrating part of
some other pool before the damaged pool can find accept-
able spares and get rebuilt. We believe that this becomes
less likely as the size of the system increases. We have cur-
rently implemented a simple backtracking search algorithm
to find a feasible sequence of pool reconfigurations. This is
another area for future research.

4. Configuration goals

While the decision algorithm can quickly make a deci-
sion about how to reconfigure storage pools, it takes time
to react to the decision by migrating data, and conditions
may change while the system is moving toward the desired
configuration. This is especially complicated when multi-
ple pools must be reconfigured in response to failure. Many
existing systems use a simple interpretation of the MAPE
model, generating a specific plan of the steps required to
move the system to a new configuration. The plan becomes
invalid when the system needs to move to a different con-
figuration.

K2 takes an alternate, more fluid path, by separating de-
cision and execution. The decision algorithms determine
the desired future configuration, and label each AP with its
goal configuration – to shrink or grow each resource, or to
go away – representing where the system should go, but not
how to get there. The system then moves toward those goals
by incrementally migrating or rebuilding virtual object data
in many small steps. The decision algorithms at the AP level
generate plans that do not deadlock, after which the migra-
tion can reach the intended configuration incrementally.

If conditions change part way through reconfiguration,
the decision algorithms place new goals on the APs and the
system starts moving in that new direction. No explicit mi-
gration plan is required in advance.

The goals are stored as a second set of resource attributes
on the AP, in parallel with the attributes that reflect current
actual resource assignment. This approach integrates the
plan (the goals) with the AP and makes the goals persistent,
so that the decisions survive manager failure, and there is
no possibility of inconsistency between manager and AP,
reducing implementation complexity.

The execution is further separated between intra- and
inter-server aspects. The migration and recovery mecha-
nisms in §5 determine what data should move between APs.
Within a storage server, APs with growth goals are given
resources when they become available, and when resources
are freed up in an AP with a shrinkage goal, the resources

are given to some other AP. In this way distributed mecha-
nisms are not needed to track detailed changes to resource
allocation, improving execution efficiency and implementa-
tion complexity.

5. Migration and recovery

Because the managers express their reconfiguration de-
cisions as coarse-grained goals on APs, the migration and
recovery mechanism must move actual resource usage to-
ward those goals by incrementally moving one virtual ob-
ject after another. The mechanism must do so as quickly
as possible while handling the possibility that one pool may
not be able to make progress until another pool has moved
some of its data out of the way.

Migration and recovery work as follows. Whenever a
pool manager has some AP with a goal or has objects with
degraded redundancy, it picks one object in the pool for mi-
gration to move the APs toward their resource goals. The
manager computes a new placement for the object, and
moves data appropriately. The new object placement uses
placement rules that avoid APs with shrinkage goals and fa-
vor APs with more available resources. (While our current
prototype migrates or recovers one object at a time, a pro-
duction system would process several objects in parallel to
improve throughput.)

First priority goes to recovering degraded objects, be-
cause restoring redundancy quickly is important to overall
system reliability. Second priority is for objects that are
partially stored on any AP has a goal of shrinking, because
migrating that object will open up resource for some other
AP in some other pool. Last priority goes to any other ob-
ject, since migrating it might improve resource balance. In
some cases no object can be migrated until some other pool
has moved data out of the way.

The pool migration mechanisms have the potential to in-
terfere with application traffic. K2 addresses this in two
ways. First, the microtransaction protocol that K2 clients
use for accessing data ensures that client accesses can pro-
ceed in parallel with migration without compromising con-
sistency or performance [3]. Second, the system sets aside
a management reserve, a fraction of the performance re-
sources of every node, and each node runs an I/O sched-
uler that ensures that migration traffic uses the reserved re-
sources when clients are concurrently performing normal
I/Os using the APs’ reserved resources.

This approach is different from other systems, which
more often have developed fine-grained migration plans
rather than moving incrementally. For example, the migra-
tion planning work by Hall et al. [8] builds a plan for the
entire data migration at once, based on complete knowledge
of all data placement changes to be done. The plan com-
pletes in as few steps as possible, while respecting resource

4



constraints on all nodes. However, the efficiency of the plan
comes at a cost of running an expensive planning algorithm,
and having to start the planning from scratch if the desired
new configuration changes. Other migration planners based
on job-shop scheduling [11] have similar properties. In con-
trast, the K2 mechanisms compute only a coarse-grained
plan – at the level of APs – after which the object-by-object
migration can proceed incrementally, knowing that there is
some feasible sequence of object migrations that will effect
the plan. The K2 mechanisms might not find as short a se-
quence of moves to complete the migration, but they avoid
wasted detailed planning if the system environment changes
during migration, requiring re-planning.

6. Conclusions

In summary, K2 provides autonomic resource manage-
ment by 1) providing failure-tolerant pool managers as a
management platform; 2) having each manager monitor the
state of its pool and set coarse-grain incremental configura-
tion goals by running decision algorithms; and 3) using mi-
gration and recovery mechanisms that incrementally move
the system toward those goals. The decision algorithms
work to ensure full provisioning for each pool, while bal-
ancing resource usage across storage servers. If conditions
change, the managers will change goals and migration will
begin moving toward the new goals.

The K2 approach to autonomic resource management
differs from other work in two ways. It is built around
a model that avoids a central authority, and instead elects
management services as needed. The resulting decentraliza-
tion allows parallel management operations in most cases.
Additionally, while K2 can be thought of as using a MAPE
loop, it avoids sharp divisions between the steps. Instead,
it works fluidly by continuously developing new goals and
moving the system toward a better state in many small steps,
which makes the system responsive to change.

We have prototyped these mechanisms, and found them
to work well in the prototype. There remain several inter-
esting research questions to investigate as we refine the pro-
totype and test it at increasingly larger scale.

7. Acknowledgements

We thank Darrell Long, UC Santa Cruz, for helpful com-
ments during the writing, and the anonymous reviewers, for
their feedback that helped us clarify the presentation.

References

[1] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.
Ganger, J. Hendricks, A. J. Klosterman, M. Mesnier,

M. Prasad, B. Salmon, R. R. Sambasivan, S. Sinnamo-
hideen, J. D. Strunk, E. Thereska, M. Wachs, and J. J. Wylie.
Ursa Minor: Versatile cluster-based storage. In Proc. of the
4th Conf. on File and Storage Technology. USENIX Assoc.,
Dec. 2005.

[2] G. A. Alvarez, E. Borowsky, S. Go, T. H. Romer, R. Becker-
Szendy, R. Golding, A. Merchant, M. Spasojevic, A. Veitch,
and J. Wilkes. Minerva: An automated resource provision-
ing tool for large-scale storage systems. ACM Trans. on
Comp. Sys., 19(4):483–518, Nov. 2001.

[3] K. Amiri, G. A. Gibson, and R. Golding. Highly concurrent
shared storage. In Proc. of the 20th Intl. Conf. on Distributed
Computing Systems, pages 298–307. IEEE, Apr. 2000.

[4] L.-F. Cabrera and D. D. E. Long. Swift: Using distributed
disk striping to provide high I/O data rates. Computing Sys-
tems, 4(4):405–436, 1991.

[5] EMC. EMC ControlCenter software family data sheet.
http://www.emc.com/products/storage_management/
controlcenter/pdf/H1082_CC_Stor_Fam_LDV.pdf, 2004.

[6] G. Ganger, J. Strunk, and A. Klosterman. Self-* stor-
age: Brick-based storage with automated administration.
Tech. Report CMU-CS-03-178, Sch. of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, Aug. 2003.

[7] R. Golding and E. Borowsky. Fault-tolerant replication man-
agement in large-scale distributed storage systems. In Proc.
of the 18th Symp. on Reliable Distributed Systems, pages
144–155. IEEE, Oct. 1999.

[8] J. Hall, J. D. Hartline, A. R. Karlin, J. Saia, and J. Wilkes.
On algorithms for efficient data migration. In Proc. of 12th
Ann. Symp. on Discrete Algorithms, pages 620–629, 2001.

[9] IBM Corp. IBM TotalStorage Productivity Cen-
ter. http://www.ibm.com/servers/storage/software/center/
index.html, 2004.

[10] INCITS Technical Committee. Information technology -
SCSI object-based storage device commands - 2 (OSD-2).
http://www.t10.org/ftp/t10/drafts/osd2/osd2r00.pdf.

[11] J. Y.-T. Leung, editor. Handbook of scheduling: Algorithms,
models, and performance analysis. Chapman & Hall/CRC,
2004.

[12] D. Nagle, D. Serenyi, and A. Matthews. The Panasas Ac-
tiveScale storage cluster—Delivering scalable high band-
width storage. In Proc. of the 2004 ACM/IEEE Conf. on
Supercomputing, Nov. 2004.

[13] K. Rao, J. L. Hafner, and R. A. Golding. Reliability for
networked storage nodes. In Proc. of DSN 2006, the Intl.
Conf on Dependable Systems and Networks, 2006.

[14] Y. Toyoda. A simplified algorithm for obtaining approxi-
mate solutions to zero-one programming problems. Man-
agement Science, 21(12):1417–1427, Aug. 1975.

[15] T. M. Wong, R. A. Golding, C. Lin, and R. A. Becker-
Szendy. Zygaria: Storage performance as a managed re-
source. In Proc. of the 12th IEEE Real-Time and Embedded
Technology and Applications Symp., Apr. 2006.

5


