
Group communication — still complex after all these years

Richard Golding Ohad Rodeh
rgolding@us.ibm.com orodeh@il.ibm.com

September 2, 2003

Abstract

Group communication is used in many file systems
and storage controller systems. Ideally, there could
be a single group communication system that serves
the needs of all these various projects—software that
was built once, tested once, and deployed every-
where. In reality, each project builds its own cus-
tom group services component. There are three rea-
sons for this: most systems require only a few group
communication features (but not the same ones);
the scalability requirements differ by several orders
of magnitude between systems; and most storage
systems have unique programming environment re-
quirements. These differences in requirements im-
ply that group communication is a toolkit that needs
to be built differently each time to fit the particular
target system requirements.

To show to what extremes customization can go
we take a look at two large-scale research storage
systems: zFS and Palladio. These systems are in-
teresting because they attempt to side-step the scala-
bility boundaries of group communication by build-
ing mechanisms tailored to their systems, yet achieve
strong semantics reminiscent of standard group com-
munication systems.

1 Introduction

Many distributed and clustered storage systems are
built using group communication systems (GCSes).
These storage systems typically have high perfor-
mance and reliability requirements. A GCS helps
with implementing redundancy for failure tolerance,
and with supporting many parallel components to get
performance.

Some example storage systems that use group
communication include:

• The IBM General Parallel File System
(GPFS) [4], part of the SPTM supercomputer,
which uses the HACMP [2] programming suite.

• IBM TotalStorage SAN File System (aka Stor-
ageTank) [7], a Storage Area Network (SAN)
file system, uses group services tailored for its
metadata servers.

• IBM TotalStorage SAN Volume Controller [8],
a SAN virtualization engine, uses group ser-
vices custom made for its limited storage con-
troller environment.

All these distributed storage systems use group
communication, but using their own, custom-built
implementations. This goes against one of the vi-
sions for GCSes: that they can provide a common
communication infrastructure, implemented once
and tested carefully. So why has it not worked out
this way?

There are (at least) three reasons why people build
custom group communication systems. First, these
storage systems need specific semantics from their
group mechanisms. Second, the intended scale of
the systems varies widely: one system is focused on
around ten group members, while another is focused
on several thousands. Finally, each of these storage
systems has its own programming environment.

It is our opinion that this trend will continue in the
future. For storage systems, the cost of building a
custom GCS is small compared to the cost of build-
ing the rest of the system, and the value of having
a small, simple GCS that does not have extraneous

1



features is high due to the cost of testing and perfor-
mance overhead.

This rest of this paper is structured as follows:
Section 2 looks at some GCSes used in storage sys-
tems in more detail, showing how their requirements
differ. Section 3 examines why GCSes are complex
to build and require many design choices and cus-
tomizations. Section 4 provides examples of two re-
search projects using custom solutions.

2 Overview of GCS-based storage
systems

HACMP [2] is targeted at highly available cluster-
ing applications. It provides the group services layer
to the GPFS file system [4] at the core of the IBM
SPTM and ASCI White supercomputers, which scale
from a few nodes up to several hundred. The group
services allow cluster nodes to heartbeat each other,
compute membership, perform multi-round voting
schemes, and execute merge/failure protocols. When
a node fails, a replacement node is chosen and re-
sponsibilities are passed to the new node. Lost to-
kens holding read/write locks and in-flight IO oper-
ations are recovered by the new node based on the
new group view and on-disk state.

The TotalStorage SAN File System [7] contains a
set of metadata servers responsible for all file system
metadata — the directory structure and file attributes.
The file system namespace is partitioned into a forest
of trees, and the metadata for each tree is stored in a
small database on shared disks. Each tree is managed
by one metadata server, so the servers share noth-
ing between them. This leads to rather light require-
ments for group services: they only need to quickly
(100ms) detect when one server fails and tell another
to take its place. Recovery consists of reading the
on-disk database and its logs, and recovering client
state such as file locks from the clients.

The TotalStorage SAN Volume Controller [8] is a
storage controller and SAN virtualizer. It is archi-
tected as a small cluster of Linux-based servers sit-
uated between a set of hosts and a set of disks. The
servers provide caching, virtualization, and copy ser-
vices (e.g. snapshot) to hosts. The servers use non-
volatile memory to cache data writes so that they can

immediately reply to host write operations. Fault
tolerance requirements imply that the data must be
written consistently to at least two servers. This re-
quirement has driven the programming environment
in TotalStorage SAN Volume Controller: the clus-
ter is implemented using a replicated state machine
approach, with a Paxos-like [9] two-phase protocol
for sending messages. However, the system runs in-
side a SAN, so all communication is through the Fi-
breChannel, which does not support multicast, and
messages must be embedded in the SCSI over Fi-
breChannel (FCP) protocol. This is a major deviation
from most GCSes, which are IP/multicast based.

3 Why group communication sys-
tems are complex

Many general-purpose GCSes have been built over
the years. Some of them, such as Ensemble [6] and
Spread [11], provide ways to customize the behav-
ior of the communication to an application’s needs.
These systems are typically fairly complex pieces of
software; why is that?

There are three things complex about the use of
GCSes: semantics, scalability, and the target pro-
gramming environment.

What kind of semantics should a GCS provide?
Some storage systems only want limited features in
their group services – such as StorageTank, which
only uses membership and failure detection. Other
systems want to communicate through the GCS, but
they use the communication in specific ways – the
SAN Volume Controller uses communication for a
reliable replicated state machine. Some important
semantics include:

• Ordering: FIFO-order, causal-order, total-order,
safe-order. Can several kinds of ordering be
used at the same time? If so, what are the or-
dering rules between, say, total-order messages
and FIFO-order messages?

• Messaging: all systems support multicast,
but what about virtually synchronous point-to-
point?

• Lightweight groups: what are the guarantees
between groups?

2



• Handling state transfer: what support is pro-
vided for handling failures, application state
and state transfer?

• Channels outside the GCS: how is access to
shared disk state coordinated with in-GCS com-
munication?

Traditional GCSes have scalability limits.
Roughly speaking, the basic virtual synchrony
model cannot scale beyond several hundred nodes
– but some products, such as GPFS on cluster
supercomputers, push these limits. What pieces of a
GCS are required for correct functioning and what
can be dropped? Should we keep failure detection
but leave virtual synchrony out? What about state
transfer?

The product’s programming and execution envi-
ronment also bears on the ability to adapt an existing
GCS to it. Many storage systems are implemented
using special purpose operating systems or program-
ming environments with limited or eccentric func-
tionality. This is done in order to make products
more reliable, more efficient, and less vulnerable to
attacks. The TotalStorage SAN Volume Controller,
for example, is implemented in a special-purpose
development environment designed around its repli-
cated state machine, and intended to reduce errors in
implementation through rigorous design. Some im-
portant aspects of the environment are:

• Programming Language: C, C++, C#, Java, ML
(Caml, SML)?

• Threading: What is the threading model
used? Some possibilities are: co-routines, non-
preemptive (where a thread needs to yield con-
trol of its own volition), in-kernel threads, user-
space threads.

• Kernel: is the product in-kernel, user-space,
both?

• Resource allocation: how are memory, message
buffer space, thread context, and so on allocated
and managed?

• Build and execution environment: What kind of
environment is used by the customer?

• API: What does the GCS API look like: call-
backs? socket-like?

This wide variability in requirements and environ-
ment makes it impossible to build one all encompass-
ing solution.

4 Two specific examples

Below two examples show custom solutions to spe-
cific distributed problems in the storage domain. The
solutions attempt to overcome the scalability limits
of group communication by using other techniques.
Group communication is still required to replicate
and make highly available basic building blocks like
security services, management consoles etc.

4.1 zFS

zFS [10] is a research project aimed at building a de-
centralized file system that distributes all aspects of
file and storage management over a set of cooper-
ating machines interconnected by a high-speed net-
work. It is designed to be extremely scalable. It can
be compared to clustered/SAN file-systems that use
group-services to maintain lock and meta-data con-
sistency. The challenge is to maintain the same levels
of consistency, availability, and performance without
a GCS.

zFS usesobject stores(ObSes) [1] as storage me-
dia, leases for locking, and distributed transactions
to guarantee consistency. It provides strong cache
consistency and journaling of metadata operations to
clients.

An object store is a storage controller that pro-
vides an object-based protocol for data access.
Roughly speaking, an object is a file, users can
read/write/create/delete objects. An object store han-
dles allocation internally and secures its network
connections. This provides a strong building block
from which to build a file system. In zFS we also as-
sume an object store supports onemajor lease. Tak-
ing a major lease allows access to all objects on the
object store. The ObS keeps track of the current
owner of the major-lease; this replaces a name ser-
vice for locating lease owners.

3



zFS is a serverless file system containing only
hosts and disks. The hosts run the management com-
ponents as well as the file system clients. A host in-
cludes an in-kernel module that implements the VFS
interface this makes zFS appear like a standard file
system to user-space applications.

A zFS configuration can encompass a large num-
ber of ObSes and hosts. While hosts can fail, we as-
sumes ObSes do not. This builds on a large body of
work invested in making storage-controllers highly
reliable. In zFS, if an ObS fails then a client re-
quiring a piece of data on it will wait until that disk
is restored. zFS assumes the timed-asynchronous
message-passing model.

Files and directories in the file system map to ob-
jects in the object store. An ObS does not distinguish
between files and directories both appear as regular
objects in its view. A directory contains an array of
records where a record contains a file name and its
location in the system: a tuple of ObS-id and object-
id. The root directory is at a fixed known location
allowing each client to traverse the file system hier-
archy autonomously.

zFS uses leases to manage access-control from
clients to data. The description here is a simplifi-
cation, the full details are given in [10].

A lease-manager (LMGR) takes the major-lease
for an ObS. It gives hosts read/write leases per ex-
tent using a strict cache-consistency policy. When a
host accesses part of a fileF on ObSα it first re-
quests the appropriate lease from LMGRα. A trian-
gle is formed, the ObS gives a lease, manipulated
by the lease-manager, and given to the client. With
the lease, the client can then access the ObS directly.
This allows clients to perform IO directly to the disk.

When a host wishes to locate an LMGR for ObS
α it queriesα. If no LMGR is currently assigned,
then the host takes upon itself the role of LMGRα.
No name service is needed for locating LMGRs.

LMGRs are located on hosts, and can therefore
fail. When LMGRα fails it’s major-lease will still
hold for a while. After the major-lease expires an-
other host can take upon itself the role of LMGRα.
All hosts that hold leases onα have sufficient time
to flush their dirty data. This makes lease-managers
state-less, they can fail at any time and the system
will continue to function.

The most challenging part of this architecture is
performing metadata operations. All metadata op-
eration: create file, delete file, create directory etc.,
are distributed transactions spanning several object
stores. For example, file creation should be an atomic
operation. However, in reality it is implemented by
creating a directory entry, then creating a new object
with the requested attributes. A host can fail in be-
tween these two steps leaving the file system incon-
sistent. A delete operation involves first removing a
directory entry then removing an object. A host per-
forming the delete can fail midway through the op-
eration leaving dangling objects that are never freed,
which will cause loss of disk space. Rename is the
most difficult operation.

4.2 Palladio

The Palladio system [3, 5] is a project to build a scal-
able, high-performance block storage system. It is
designed to be built from many relatively small ma-
chines connected by high-speed IP networking. The
nodes might be placed at multiple sites to support
recovery from site failures. The system is intended
to work well at ten nodes, and scale up to storing
petabytes of data across thousands of nodes.

Data in Palladio is organized intovirtual stores.
Each virtual store presents an array of blocks, much
like a disk or logical volume. Virtual stores are in-
dependent: IO operations done on one store have no
effect on the data in other stores (other than the per-
formance effects of contention for shared resources
such as the network.)

Hosts using the Palladio system use a local storage
driver to perform IO operations. The driver talks to
two other services:storage devicesandmanagers. A
storage device is a container for several chunks, each
of which holds some data. Chunks from several stor-
age devices are aggregated together using alayout
policy to hold all the data in the virtual store. Ex-
ample layouts include striping, where the data from
the virtual store is spread over multiple chunks non-
redundantly, replication, where the data is replicated
identically between two or more chunks, and RAID
layouts, which combine striping with some form of
computed redundancy code. The manager service
for a virtual store acts as the contact point where

4



clients can get a copy of the layout, and coordinates
changes to the layout amongst all the storage devices
involved.

The system is designed as three tiers, each build-
ing on the ones below it: IO processing, layout man-
agement, and global system control. The IO pro-
cessing tier has the highest performance requirement
but also the most localized view for each operation,
while the global system control has modest perfor-
mance requirements and the most global view.

• IO processing. This tier handles each IO re-
quest that hosts make. Each IO operation must
be performed quickly, and large numbers of
them must be processed in parallel – even to
data that are shared, such as occurs when reads
and writes are being done to data that are be-
ing moved from one storage device to another.
It is implemented as a lightweight transaction
protocol that borrows heavily from group com-
munication. A write that spans multiple storage
devices, for example, is processed atomically
and with total ordering. Most IO operations will
span up to around ten storage devices, with two
being most common. Rare IO operations can
span hundreds of storage devices.

This protocol differs from traditional group
communication in a few ways. First, each IO
operation can (and typically does) involve a dif-
ferent set of storage devices, computed from the
virtual store, offset and length of the request,
and the layout. Each of these operations is inde-
pendent of other operations, but must be consis-
tently ordered. Second, different data are usu-
ally delivered to each of the devices (consider
striped layouts). Finally, the transaction proto-
col is optimized for non-failure cases. When a
failure occurs, the protocol simply blocks until
the problem is detected and resolved by the next
tier.

• Layout management. This tier keeps the lay-
out for each virtual store consistent and correct
amongst the storage devices and manager hold-
ing parts of that store. Each virtual store is in-
dependent. This protocol borrows from group
membership protocols: managers and storage
devices heartbeat each other to detect probable

failures, and when membership changes occur,
an atomic consensus mechanism ensures that all
storage devices and managers see a consistent
view. Membership changes are, of course, or-
dered with respect to data operations. Typical
operations involve tens of participants, with a
maximum around a hundred. The layout man-
agement tier only implements the mechanism
for changing the layout; it reports suspected
failures to the global control tier, and makes
changes based on its responses.

This protocol differs from GCS membership
protocols primarily in that it handles manager
failure specially: when a manager for a vir-
tual store fails, the protocol elects a replacement
from a pool of nodes that can host manager ser-
vices.

• Global system control. This tier reacts to node
failures, creation and removal of virtual stores,
and measurements of workload, allocating stor-
age resources in order to balance load and main-
tain needed redundancy. Some of these events
come from user actions, while others come from
the failure detection mechanisms in the layout
management tier. This requires a global view,
but a global view over several thousands of
nodes at multiple sites is not feasible. Instead,
hierarchical decision mechanisms are used to
divide the system into regions of feasible size.

The IO processing and layout management tiers
are thus similar in purpose to a general-purpose GCS,
but are specialized to the problems at hand. This
specialization results in a good fit with the semantic
needs of the storage system: the lightweight trans-
action mechanism, for example, ensures that feasible
recovery is simple after most kinds of failure.

4.3 Comparison

It is difficult to compare zFS and Palladio as this isn’t
an apples-to-apples comparison. zFS is a file-system,
Palladio is a block-storage system. zFS uses object-
stores where Palladio uses “almost” regular disks.
It is interesting to compare the systems nonetheless
since they are both highly-scalable and attempt to
side-step the boundaries of group-communication.

5



Below, we simplify and and assume that both sys-
tems use “disks”.

Palladio:

• Uses group-services outside the IO path.

• Performs IO to a small set of disks per IO

• Uses light-weight transactions

• Does not use reliable disks

• Uses a name-server to locate internal ser-
vices

zFS:

• Does not use group services.

• Performs IO to a small set of disks per
transaction

• Uses full, heavy-weight, transactions

• Uses reliable disks

• Does not uses an internal name-server

It remains to be seen if zFS will manage to do
without group-services altogether.

5 Summary

It is the authors’ opinion that group communication
is complex and is going to remain complex, with-
out a one-size-fits-all solution. There are three major
reasons for this: semantics, scalability, and operat-
ing environment. Different customers (1) want dif-
ferent semantics from a GCS; (2) have different scal-
ability and performance requirements; and (3) have a
wide range of programming environments including
varying operating systems, threading models, mem-
ory footprint requirements and more. We believe that
in the future users will continue to tailor their pro-
prietary GCSes to their particular environment. The
good news is that the field is going to continue to be
challenging, the bad news is that we are going to be
solving variants of the same problem over and over
again.

References

[1] www.snia.org/tech activities/workgroups/osd .

[2] Group Services Programming Guide and Refer-
ence, RS/6000 Cluster Technology. IBM, Inter-
national Technical Support Organization, 2000.

[3] K. Amiri, G. Gibson, and R. Golding. Highly
concurrent shared storage. InInternational
Conference on Distributed Computing Systems,
April 2000.

[4] F. Schmuck and R. Haskin. GPFS: A shared-
disk file system for large computing clusters.
In First Conference on File and Storage Tech-
nologies (FAST), January 2002.

[5] R. Golding and E. Borowsky. Fault-tolerant
replication management in large-scale dis-
tributed storage systems. InSymposium on Re-
liable Distributed Systems, April 1999.

[6] Hayden, M. The Ensemble system. Phd The-
sis TR98-1662, Cornell University, Computer
Science, 1998.

[7] J. Menon, D. A. Pease, R. Rees, L.
Duyanovich, and B. Hillsberg. Storage Tank, a
heterogeneous scalable SAN file system.IBM
Systems Journal, 2(42), 2003.

[8] J. S. Glider, C. F. Fuente, and W. J. Scales. Soft-
ware architecture of a SAN storage control sys-
tem. IBM Systems Journal, 2(42), 2003.

[9] L. Lamport. The part-time parliament.ACM
Transactions on Computer Systems, 16(2):133–
169, 1998.

[10] O. Rodeh and A. Teperman. zFS – a scalable
distributed file-system using object-disks. In
Goddard Conference on Mass Storage Systems
and Technologies, April 2003.

[11] Stanton, J. and Amir, Y. The Spread wide
area group communication system. TR CNDS-
98-4, Center for Networking and Distributed
Systems, Computer Science Department, Johns
Hopkins University, 1998.

6


