Appears in the Proceedings of the International Conference On Distributed Computing Systems, Taipei, April 2000.

Highly concurrent shared storage

Khalil Amiri, Garth A. Gibson Richard Golding
Carnegie Mellon University, Pittsburgh, PA Hewlett-Packard Laboratories, Palo Alto, CA
{amiri+,garth+}@cs.cmu.edu golding@hpl.hp.com
Abstract? One of the major limitations of today’s I/O subsystems is

their limited scalability caused by shared controllers that
Switched system-area networks enable thousands of storag@ta must pass through, typically from server to RAID
devices to be shared and directly accessed by end hostggntroller, and from RAID controller to device. Emerging
promising databases and filesystems highly scalable, rélishared, network-attached storage arrays, like the one shown
able storage. In such systems, hosts perform access tasjrigure 1(a), enhance scalability by eliminating the shared
(read and write) and management tasks (storage migratioontrollers and enable direct host access to potentially
and reconstruction of data on failed devices.) Each taskhoysands of storage devices [9, 18] over cost-effective
translates into multiple phases of low-level device 1/0s, sayyjitched networks [4, 15]. In these systems, each host acts
that concurrent host tasks accessing shared devices cags the storage controller on behalf of the applications
corrupt redundancy codes and cause hosts to read inconsigynning on it, achieving scalable storage access bandwidths
tent data Concurrency control protocols that scale to large [9].
system sizes are required in order to coordinate on-line Unfortunately, such shared storage arrays lack a central
storage management and access tasks. In this paper, Weint to effect coordination. Because data is striped across
identify the tasks that storage controllers must perform, an%everm devices and often stored redundanﬂy, a sing|e
propose an approach which allows these tasks to be comopgical 1/0 operation initiated by an application may
posed from basic operations—called base storage transagnyolve sending requests to several devices. Unless proper
tions (BSTs)—such that correctness requires only theoncurrency control provisions are taken, these 1/0s can
serializability of the BSTs and not of the parent tasks. Wehecome interleaved so that hosts see inconsistent data or
present highly scalable distributed protocols which exploitcorrupt the redundancy codes. These consistencies can
storage technology trends and BST properties to achieveccur even if the application processes running on the hosts
serializability while coming within a few percent of ideal are participating in an application-level concurrency control
performance. protocol, because storage systems can impose hidden

. relationships among the data they store, such as shared
1. Introduction parity blocks.

Traditional I/0 subsystems, such as RAID arrays, use a sin- For example, consider two hosts in a cluster as shown in
gle centralized component to coordinate access to storagBe timeline of Figure 1(b). Each host is writing to a
when the system includes multiple storage devices. A sinseparate block, but the blocks happen to be in the same
gle storage controllerreceives an application’s read and RAID stripe, thereby sharing the same parity block. Both
write requests and coordinates them so that applications sé@sts pre-read the same parity block and use it to compute
the appearance of a single shared disk. In addition to pethe new parity. Later, both hosts write data to their
forming storage access on behalf of clients, the storage corf2dependent blocks but overwrite the parity block such that
troller also performs other “management” tasks. Storagét reflects only one host's update. The final state of the
management tasks include migrating data to balance load ®@rity block is, therefore, not the cumulative XOR of the
utilize new devices [18], adapting storage representation tgata blocks. A subsequent failure of a data disk, say device

access pattern [25], backup, and the reconstruction of da# Will lead to reconstruction that does not reflect the last
on failed devices. data value written to a device. In general, races can occur

between concurrent host accesses, or between concurrent

1. This research is supported by DARPA/ITO through DARPA 8CCESSeSs qnd management operations such as migration or
Order D306, and issued by Indian Head Division, NSWC réconstruction.
under contract N00174-96-0002. Additional support was pro- Scalable storage access and management is crucial in
vided by the members companies of the Parallel Data Contoday’s storage marketplace [11]. In current storage
sortium, including: Hewlett-Packard Laboratories, Intel, systems, management operations are either done manually

8821?:131 ,ESMeggztr?dTSe;rI:%?cl)c;gE/bs\]/}@d River Systems, 3Comafter taking the system off-lineuse a centralized

Host A Dev1l Dev2 Dev 3 (parity) Host B

Servers Pox +Y
(Hosts) sgg Ta: hostwrite (%) o |Yo | "o™FoYo Tg: hostwrite (g)
devread(data): X :§ devread(parity): p
app devread(parity): P <— | | devregd(data): Y
PSC devwrite(data): X% \ «— devwrite(data): %
devwrite(parity):\XA Y8 b4y devwrite(parity):
L S
N Parallel ~ 25C (XatYo) B Ay (XotYg)
Storage =
Controller VXA VYB VP %o*Ys

@) (b)
Figure 1: A shared storage system (a), and a timeline showing two concurrent small writes from two hosts (b). No concurrency control
provisions are taken. Although host A is updating device 1 and host B is updating device 2, both must read, modify and update the same
parity block on device 3. Both hosts read the same version of the parity block and the final writer leaves parity inconsistent.

implementation [25], or assume a simple redundancyexpensive higher-level failure and disaster recovery mecha-
scheme [18]. The paramount importance of storage systemisms. For example, in RAID level 5, a parity-based redun-
throughput and availability leads to the employment of ad-dancy code is computed across a group of data blocks and
hoc management techniques, contributing to annual storagdored on a separate parity device. This allows the system to
management costs that are 6-12 times the purchase costtolerate anysingle self-identifying device failutey recov-
storage [11]. ering data from the failed device using the other data blocks
In this paper, we address the challenges of building an the group and the redundant code [23]. The block of par-
scalable distributed storage system that enables higtly that protects a set of data blocks is called a parity block.
concurrency between access and management tasks whheset of data blocks and their corresponding parity block is
ensuring correctness. In particular, we characterize thealled a parity stripe. Because it is one of the most complex
tasks that storage controllers perform and break these taské common storage redundancy schemes, we focus for the
down into sets of basic two-phased operations, which weest of this paper on RAID level 5 as our case study and
call base storage transaction§BSTs). We claim that evaluation architecture.
overall correctness requires ensuring onlysbdalizability Figure 1(a) shows the kind of system that concerns us. A
of the component BSTs and not of the parent tasks. Wenared storage system is composed of multiple disks and
present distributed concurrency control protocols thafygsts, connected by a scalable network fabric. The devices
exploit BST properties and technology trends toward morestore uniquely named blocks and act independently of each
device functionality to provide serializability with good gther. Each host acts as a storage controller for its
scalability. The protocols we present come within a fewgpplications. The controller function can be implemented in
percent of the performance of an ideal zero-overheadpftware as an operating system device driver or could be
protocol that would perform no concurrency control work delegated to a network interface card.
and provide no correctness guarantees. We further argue pHqosts perform exactly four operations, divided into
that only a limited form of atomicity, and not “all or 5ccess taskand management taskhe access tasks are
nothing” atomicity, is required from BSTs. reads and writes hpstread and hostwrite operations).
The rest of the paper is organized as follows: Section 2rhese tasks provide semantics essentially identical to
describes in more detail the kind of tasks that are carrieqieadmg and writing a disk drive or array. The management
out at the storage layer (by the storage controllers). Ifasks are reconstruction and data migratieecénstruct
Section 3, we show how these tasks can be composed out ghdmigrate operations respectively). Each high-level task
a few BSTs. We further show that the serializability of the g mapped onto one or more low-level /O requests to
BSTs ensures correctness for the parent tasks. In Section (bontiguous) physical blocks on a single devidevread
we present distributed concurrency control protocolsyng devwrite). Depending on the striping and redundancy
specialized to BSTs. We compare their performance tcbolicy, and whether a storage device has failebdostread
centralized variants and to the zero-overhead protocol. Wg; nostwrite may break down into different low-level
conclude the paper in Section 5. devreads and devwrites, and some form of computation
may be needed, such as computing parity. We refer to low-
level device requests that are part of the same high-level
Large collections of storage commonly employ redundancyask assiblings
that is transparent to applications, so that simple and com- The hostread and hostwrite tasks are addressed to
mon device failures can be tolerated without invokingvirtual objects which may be files, or whole volumes.

2. Storage system description

Map: | Mode = FAULT-EREE Loc=(By,B»,B5) | Stripe Map:| Mode= DEGRADED Failed (B) Loc=(By,B,,B3

)|
Fﬁe E} ® é F‘e
@@l%l o] [5] [¢] @IEI% [o] [¢] @’—;Tlé @Elﬁl El@l% [o1 0

B, B, Bg B, B, By B, B, Bg B, B, Bs By By B3 By Bz Bg B1 By B3 By By B3
(a)fullStripeWrite (b) largeWrite (c) readModifyWrite (d) read (a) reconstructWrite (b) degradedRead (c) readModifyWrite (d) parityFailedWrite

Figure 2: BSTs used in AoLT-FREE mode. Only one narrow Figure 3: BSTs invoked in BGRADED mode. The
stripe is shown for simplicity. Aostwrite invokes one of three reconstructWritBST (a) is invoked when the failed disk is being
BSTs (a-c), and &ostread invokes theread BST (d). An arrow updated. In this case, the data blocks being updated are read
directed towards a device representdexwrite; an arrow away and XORed with the new data to compute and update the parity
from a device represents a read; all reads precede all writes. block. ThedegradedReaBST reconstructs the data on the failed
block using all the other data and parity blocks in the stripe.

o)) . failures only occur while the system is idle (in the gaps
Blocks within a virtual object are mapped onto physicalpanyeen task executions). We then discuss how traditional
block ranges on one or more physical storage devices. The,micity and isolation properties can be interpreted for

representation of a virtual object is described bgtape gorage tasks to cope with concurrent execution and failure.
map which specifies how the object is mapped, what

redundancy scheme is used, and what BSTs to use to re@l1. Base Storage Transactions

and write the object. Stripe maps are cached by StOragESTs are transactions specialized to storage controller
controllers to enable them to carry out the access task

\ sks. An access taskpstread or hostwrite, is executed
Each host’s controller performs access tasks on behalf of . : :
e . . using one BST. Which BST is chosen depends on the state
the applications running on it.

: . : of the system and exactly which blocks are being accessed.
Management functions will occasionally change the .
Storage management taskeconstruct and migrate are

contents of stripe maps—for example, during data : : .
o P ap P 9 lflsually composed of a series of short-running BSTs. This
migration or reconstruction. However, hosts cache copies o .) e
duces the impact on time-sensitive host access tasks and

: [
the maps, which must be kept coherent. There are several : L
S : enables a variety of performance optimizations [14, 20].

ways to maintain this coherence, such as using leases and . o
Each virtual object is in one of four modesadtT-FREE

invalidation callbacks on the cached data or other method . .

i) . o ahe usual state), BGRADED (when one device has failed),
[10]; we do not consider this issue further in this paper. RECONSTRUCTING (when recovering from a failure) or
3. Shared storage management MIGRATING (when moving data). The first two modes are

accesgnodes, where only access tasks are performed, and

Concurrency is an essential property of shared storage. lfhe second two aremanagementmodes, where both
large clustered systems, for example, many clients often us@anagement and access tasks are allowed. Different BSTs
stored data at the same time. In addition, the reconstructiogre used in different modes, parﬂy to account for device
or copying of large virtual objects can take a long time.fajlures and partly to exploit knowledge about concurrent
However, it is hard to ensure correctness when concurreffhanagement and access tasks. Table 1 shows the BSTs
storage controllers share access to data on multiple deviceged to perform each allowed task in each of these modes.
Device failures, which can occur in the midst of concur- The BSTs for RULT-FREE and DEGRADED modes are
rently executing tasks, complicate this further. straightforward, and are shown in Figure 2 and Figure 3

Transaction theory, which was originally developed for respectively. The other two modes are described below.
database management systems, handles this complexity

grouping primitive read and write operations into
transactions that exhibit ACID properties (Atomicity,

I?«,’3./1.1. RECONSTRUCTING mode.This mode is used when
recovering from a disk failure (Figure 4). The system

Consistency, Isolation and Durability) [13]. Databases,dedares a new block on a new disk to be the replacement

however, must correctly perform arbitrary transactionsblofk' ;[r;ﬁnttélsesktrjrf_construct tas_k to rﬁf?‘\ﬁ;;hte czn-
whose semantics are application-defined. Storagéenso atblock. This can occur in paralle strea

controllers, on the other hand, perform only four tasks, anc?lrzjd hOdStW”te tasks_. Al fthetf]e ta;s_ks aget?xvare oc}‘ggt_:] the
the semantics of these tasks are well known. This a prioff ¢ 21d N€W Mappings for the stripe, but the rea S use

knowledge enables powerful specialization of transactioﬁhe original array, ignoring the replacement bI.OCk alt(_)-
mechanisms for storage tasks [7]. getherHostwrite tasks use BSTs that behave as if the orig-

In the following discussion, we will describe the inal array were in BGRADED mode, but also update the

consistency of storage controller tasks in terms of a durabIEeplacement block whenever the failed block is written to.
serial execution, where tasks are executed one at a time and

Stripe Map] Mode=RECONSTRUCTING OldLoc=(B;,B,,B3) Failed(B)

Stripe Mapl Mode = MGRATING OldLoc=(B,) NewLoc=(B,) |
NewlLoc=(B;,Bg,B3)

A
|—>9 ® ®
: o Lt I A Gg
@EE IEI@ IEI IEI@IEIIE B B B, B B; B
By Bz Bs By By B; Bg By B, Bs Bg e 1 Bu
(a)degradedRead (b) replacementWrite (c) rebuildRange &gl)d”;l#gwé% ggl)drigg " (c) copy

Figure 4: BSTs invoked in BCONSTRUCTINGmMode. Block B is allocated as the
replacement block. ThdegradedRea®8ST (a) is invoked by dostreadtask if ~ The stripe map specifies the old and the new
the failed device is being accessed. TaadModifyWriteBST (shown in Figure locations of a physical block. Ahostwrite

3) is invoked by ahostwrite task if the failed device is not being updated. The invokes themultiWrite BST (a) which writes to
replacementWritST, which is areconstructWriteBST that in addition updates both the old and new locations; laostread
the replacement block, is invoked if the failed device is being updated. Theeads data from the old location (b). The
rebuildRangeBST (c) is invoked by theeconstruct task to reconstruct the data migrate task invokes thecopy BST (c) which

on the failed device and write to the replacement one. copies data from the old location to the new

Figure 5: BSTs invoked in MsRATING mode.

location.
M oODE
FAULT -FREE DEGRADED RECONSTRUCTING MIGRATING
Task (Figure 2) (Figure 3) (Figure 4) (Figure 5)
hostread read failed block:degradedRead failed block:degradedRead read
elserread else:read(old location) (old location)

hostwrite small:readModifyWrite failed block:reconstructWrite | failed block:replacementWrite| multiWrite

large:largeWrite other failedreadModifyWrite | other failedreadModifyWrite | (and cloning)

full stripe: fullStripeWrite | parity failed:parityFailedWrite | parity failed:reconstructWrite

(new location)

reconstruct | — — rebuildRange —
migrate — — — copy

Table 1 : BSTs used for different tasks in different modes. The BST chosen depends on the “size” of the write, as a fraction of the
blocks in the stripe, and on whether the block being accessed has failed, some other data block has failed, or the parity block has failed.

The reconstruct task rebuilds the data on the ical blocks from their old locations. Thread BST does not
replacement block using theebuildRangeBST, which access the target physical blocks because they may be still
reads the surviving data and parity blocks in a stripeempty. Themigrate task can be ongoing in parallel using
computes the contents of the failed data block and writes ithecopyBST_ This can be easily generalized to a redundant
to the replacement disk. When tteconstructtask is done, scheme by cloning the part of each write BST that updates

the replacement block will reflect the data from the fa”edthe source to also update the target with the same value.
block, parity will be consistent, and the stripe enters

FAULT-FREE mode. Note that reconstruction concurrent3.2. BST Properties
with host accesses may result in unnecessary, but sti

BsTs specialize general transaction ACID properties to the
correct, work.

limited tasks of shared storage controllers.

3.1.2. MGRATING mode.To simplify exposition, assume & 3 5 1 BST Consistencyn the context of shared redundant

non-redundant virtual object as shown in Figure 5. In thisstorage, consistency means that redundant storage blocks

mode, the stripe map for the virtual object specifies the ol¢tgain data that correctly encodes the corresponding data
and new physical locationslostwrite tasks update the old 1,k values. For RAID 5. this means that after each BST,

and new physical locations by invokingnaultiWrite BST. 1he yajue of the parity block (P) is the XOR of all the values
Thus, at any point during the migration, the target physicalyt he |ast writes to each of the corresponding data blocks
blocks are either empty (not yet written to) or contain the D). Each of the BSTs shown in Figures 2—5 has the

same contents as their associated source physical blocks.onerty that, provided storage is consistent when they start
Hostread tasks invoke theead BST, which reads the phys- 54 does not fail while they are executing, and provided

that BSTs execute one at a time, then storage is consisteifihis is accomplished by piggybacking notification on the
after the completion of the BST. concurrency control protocol of Section 4.)

3.2.2. BST Durability. Because the primitive operations of 3.2.4. BST IsolationWe can now relax our assumption
BSTs transform stable storage (typically magnetic disks)that BSTs execute serially. In showing that consistency,
durability of changes is not difficult. Storage regions durability, and atomicity are correctly maintained when
written by a successful BST maintain the last written dataexecuting BSTs, we only required isolation between the
and never switch back to older data values. Durability iseffects of one BST's execution and those of others.
preserved even after single device failures: RAID 5Serializableexecution of BSTs both allows concurrency
reconstruction, combined with BSTs preserving data-parityand provides this level of isolation by ensuring that the
consistency, ensures that the data values reconstructed ogsults of the concurrent execution are identical to the
new storage are the same as the last written values. results of some serial execution sequence [22].

3.2.3. BST Atomicity.This is the property that a The following sections analyze four serializability

transaction, once started, either completes entirely O?Igonthms for shared storage systems.
terminates without changing any st_orage values. In_thQL Concurrency control algorithms for BSTs
absence of knowledge of the function of a transaction,
database systems must provide full atomicity by loggingA protocol that provides serializability is commonly called
values to be changed before making any changes. R concurrency control protocol. We discuss two commonly
preserves the logs until all changes are made, and re-appligsed centralized concurrency control protocsésyer lock-
the log of committed changes to recover from a failure [13]. ing and callback locking and present our new device-sup-
However, for storage tasks we have full knowledge bothported distributed protocolsgevice-served lockingand
of the specific semantics needed by storage tasks and thignestamp orderingWe show how the distributed protocols
structure of the BSTs that will implement them. benefit from specialization to BST properties and storage
Specifically, all BSTs can be represented as directed acycligchnology trends. We evaluate performance relative to the
graphs (Figure 7), in which it is possible to ensure that nddeal performance of a zeimverhead protocol, which per-
device write begins until after all device reads are completdorms no concurrency control.
[7]. This point, immediately before the initiation of any
writes, is thecommit point The notion of the commit point
allows us to relax our previous assumption that failureswe implemented our protocols in fully detailed simulation,
occur only between BST executions. Note that we stillusing the Pantheon simulator system [25]. We simulate a
assume a single device failure, and the occurrence of morguster system consisting of hosts and disks connected by a
than one failure, or other untimely host failures, isnetwork. Table 2 shows the baseline parameters of the
catastrophic and can result in data loss. experiments. Although the protocols were simulated in
Before reaching the commit point, any BST detail, the service times for hosts, controllers, links and
encountering a device failure (during a read) simplystorage devices were derived from simple distributions
terminates, and its parent task reissues a new BST fdbased on observed behavior of Pentium-class servers com-
DEGRADED mode. After the commit point, a BST municating with 1997 SCSI disks [24] over a fast switched
encountering a single device failure (during a write) simplylocal area network (like FibreChannel). Host clocks were
completes. This is correct because an observer cannot
distinguish between a single failure occurring after the
commit point and the failure of that device immediately
after the BST completes. System | 20 devices, 16 hosts, RAID level 5, stripe width 5 4
If a host fails after the commit point but before data hagsize data + parity, 1000 blocks per device.
been sent to all devices, atgmicity will be violated becau Eost random think time (normally distributed with medn
some blocks have been written, and the values that shollgorkioad | 80 ms, var. 10ms), 70% reads, access size unifofmly
have been written to the others have been lost with the loss random between 1-4 blocks, target address random.
of the host’s memory. All existing (non-database) stora

4.1. Evaluation environment

Baseline simulation parameters

“Service | Disk: 8ms positioning, 16MB/sec transfer rate.

systems have this problem. Our system, in this casgjmes Network: 1-2ms overhead per message
protects parity consistency by detecting the host failure and 10 MBytés/sec switched Ethernet. 75@('; mean
initiating a rebuildRangeBST to update the parity to host/lock server message processing time.

correspond to this possibly corrupted data. (Note that O e 7 - Basel o——— : Host data is strived
detect a failure and take these actions, storage system coc?epe - baselne simuiation parameters. Host dala 1S stripe

. . . —across the parity group. We assume modern disk drives and a
not on the failed host must know which BST was aCtIVeSwitched network of 10MB links. Runs are repeated five times.

Each run lasts 500 seconds to keep variance small.

allowed to drift within a practical few milliseconds of real- (for adevwrite) or a shared (for devread) lock on a set of
time [19]. We compared the performance of the protocolgarget ranges by sending a singpek messagéo the lock
under a variety of synthetically generated workloads andserver. The lock server queues a host’s request if there is an
environmental conditions. The baseline workload repre-existing lock on any part of the requested range. Once
sents the kind of sharing that is characteristic of OLTPconflicting locks have been released, the server grants the
workloads and cluster applications (databases and file servequest. The host may then issue the low-level 1/O requests
ers), where load is dynamically balanced across the hosts ¢o the devices devreads or devwrites). When all 1/O
servers in the cluster resulting in limited locality and mostly requests in the BST complete, the host sendsu@liock
random accesses. This baseline system applies a moderatessageo the lock server. As there is only one lock and
to high load on its storage devices, yielding about 50% susene unlock message per BST, the protocol is trivially two-
tained utilization. We report the performance of the proto-phase and therefore serializable. Because all locks are
cols in FAULT-FREE mode since it is representative of their acquired in a single request, lock acquisition latency is
general performance. Moreover, the relative performance ahinimized and deadlocks are avoided. However, server
the protocols under BGRADED mode was found to be simi- locking introduces a potential bottleneck at the server and
lar to that under RULT-FREE mode. delays issuing low-level 1/O requests for at least one round

. . trip of messaging to the lock server.
4.2. Centralized locking protocols , o)
4.2.2. Callback locking.This is a popular variant of server

89.29 . Locking is the |ocking that delays the unlock message, effectively caching
80 ; most commonly the Jock at the host, in the hope that the host will generate
. . employed mecha- another access to the same block(s) in the near future and
- J nism _for imple- pe aple to avoid sending subsequent lock messages to the
2 F P menting server [16, 17, 6]. If a host requests a lock from the lock
O e 4 concurrency con- server that is currently cached by another host, the server
g S trol. Although it 3sks the host holding the cached lock (this is ta#back
= B provides a task messagpto relinquish it before granting the lock to the
7 . with exclusive npewly requesting host. A common optimization to callback
e ok access to a data - : : « "
-+ callback locking locking is to have locks automatically expire after a “lease
----- zero-overhead protocol item. execution) .
0 oo L . rem, { period so that callback messages are sent only to reclaim
150 0 May not be serial- recently cached locks. Our implementation uses a lease
total throughput (ops/sec) izable and dead-

. . period of four seconds.
Figure 6: Scaling of server and callbaciocks can occur

locking. The baseline workload (16\yhen a task needs 24-2-3- PerformanceFigure 6 highlights the scalability

hosts) corresponds to the fourth poinf "\ "\ Litiple limitation of centralized locking protocols. It plots the

from the left in the graph. P average host-end task latenc inst total offered
blocks and does so 9 y aganst total orere
carelessly. Further throughput (by varying the number of hosts) using the

locking can severely limit concurrency. In practice, serializ-Simmation param(_aters of Table 2,' The plots of Figure 6
ability of tasks that obtain multiple locks is achieved with show that the locking protocols deliver only 300_/0 or 50% of
two-phase lockinga programming discipline in which no the full throughput of the I/Q system, as defined by the
lock can be released before the last lock has been obtaing§ro-overhead protocol (which performs no concurrency
[12]. The effect on concurrency can be limited by locking control work and provides no consistency guarantee_s). The
only the minimum necessary items, and holding the lockdProtocols bottleneck at a fraction qf the attainable
for as short a time as possible. Deadlock is handled either bg’foughplﬂ because the lock servers CPU saturates
avoidance, such as a discipline of acquiring locks in a stricf@ndling lock and unlock requests (7f6ec per message
published order in all tasks, or by a detection and recoverfent or received.) While there are several ways to increase
mechanism, which detects (likely) deadlock and abortdOCk server throughput, by streamlining the server's
some lock-holding tasks. We discuss two locking a|go_network processing and request handling for example, they
rithms: simple server locking and its caching variant, call-do not eliminate .the bottleneck.

back locking. The protocols have the two-phase property Callback locking can reduce lock server load and lock

and hence ensure serializability. They are also free fron@cauisition latencies when locks are commonly reused by
deadlocks. the same host multiple times before a lease expires. The

))) false sharing induced by shared parity blocks can reduce
4.2.1. Server lockingUnder this scheme, a centralized {hjs penefit somewhat. Figure 6 shows that at the baseline
lock server provides locking on low-level storage blockyorkioad, callback locking reduces latency relative to
ranges. A BST executing at a host acquires an exclusivgjmple locking by 20% but is still 33% larger than the zero-

overhead protocol. This benefit is not from locality—the begin BST begin BST begin BST

workload contains little of it—but from the dominance of /> -
read traffic, which allows concurrent cached read locks at . GIGIO
all hosts until the next write. In the worst case, however, N o

each lock is used once by a host, and then is called back by
a conflicting use at another host. This will induce the same
number of messages as simple server locking, but lock
acquisition latency can be much worse: for example, a write end BST end BST

lock request that conflicts with a read lock shared by many readModifyWrite fullStripeWrite read

hosts must wait for all of those hosts to respond to theirrigure 7: The implementation of BSTs with device-served
callbacks. Callback locking also is more sensitive to locking and the piggy-backing optimization. A node represents a
contention than server locking. In other experiments, wemessage exchange with a device. An “L" node stands fock
found that callback locking gives worse latency than server2P€ration; a “U” node stands for amlock operation. “LR”

. represents thelock-and-devread operation, while “WU”
locking at high contention due to its longer lock hold times. represents thedevwrite-and-unlock. The edges represent

control dependencies. A “B” node represents a commit point at
4.3. Parallel lock servers the host, where the host blocks until all preceding operations
The scalability bottleneck of centralized locking protocols complete, restarting from the beginning if any of them fail. Lock

. R) operations can fail if the device times out before it can grant the
can be avoided by distributing the locking work across mul- |0F::k (“A"). g

tiple parallel lock servers. Locks can be partitioned across))
multiple lock servers according to some static or dynamic>eParate unlock phase is required. Fortunately, the second

scheme, and hosts send lock requests, consistent with th-han] latency can be hidden from rt]he app!lcatl?n Elnce the
phase locking rules, directly to the appropriate servers. data has been received. For two-phase writes, locks can be

However, multiple lock servers lack a key benefit of acquired during the first I/O phase (by piggy-backing.the
centralized locking: simple deadlock avoidance. UsingIOCk reguests on théevread requests) and released during

parallel lock servers, deadlocks can be avoided by acquiring'® Second /O phase (by piggy-backing the unlock

locks one at a time, but this increases the locking |atenc)?nessages onto thdevwrite requests) totally hiding the

and lock holding time substantially. This in turn increases atency and messaging (?OSt of Ipcking. We require that a
the probability of lock conflicts. host not issue angevwrites until all locks have been

Instead, deadlocks can be detected via request time-ou@cduired in order to preserve atomicity, although it may
If a lock request cannot be granted at a lock server within 4SSuedevreads Restarting a BST in the lock acquisition
given time, that server presumes deadlock and denies tH§12se, therefore, does not require undoing writes (since no

request. The host BST then releases any acquired locks, affdt@ has been written yet).

retries from the beginning. We present a specialized .T.he efficiency of device-supported parallel locking
implementation of this scheme in the following section. eliminates the need for leased callback locks. Two-phase

writes have no latency overhead associated with locking,
4.4. Device-served locking and the overhead of unlocking for single phase reads is not

Given the opportunity of increasing storage device inte”i_observable. Only single phase writes would benefit from
PP y g 9 lock caching, and we feel that the simplicity of simple

gence [9, 18], we investigated embedding lock servers in, . . .
. . . device-served locks outweighs the possible performance

the storage devices [21]. Device-served locking reduces the . .
Improvement. Our experiments show that device-served

cost of a scalable serializable storage array by e”minatin%cking is more effective than the centralized locking

the need for dedicated lock server hardware, and decreases . . : . -
e sChemes. With the baseline workload, it achieves latencies
latency and the total number of messages by exploiting the o
. . only 10% larger than minimal and a peak throughput equal
two-phase nature of BSTs to piggy-back lock messaging on .
to 94% of maximum.

I/O requests.

. . Despite its scalability, device-served locking is
In device-served locks, each device serves locks for the) .
vulnerable to poor performance under high contention

lock load over all the devices. While widely-parallel because of s _suscept|b_|l!ty to deadlocks and the difficulty
of properly tuning the critical lock request timeout. Under

locking like this can introduce many lock and unlock . : :
;) 2 . low to moderate contention, which we induced by
messages, device-served locking mitigates this somewhal . .
controlling the fraction of storage addressed by all hosts,

ﬁ\ylggll?rggmkmg these messages on I/O requests as Shovéﬁrévice—served locking did better than centralized locking,

: . . but when contention was high (hosts accessing only 2% of
For single-phase reads, lock acquisition can be piggy- : ; .
X the active disk space), the system became unstable. This

backed on the reads, reducing pre-lI/O latency, but a)
was because many BSTs restarted, either because of actual

deadlocks or a too-short timeout setting, thus causing begin BST begn BST

device overload. A A

. . \ @ @ @ \ 9 G G begin BST
4.5. Timestamp ordering - ~ _
Developed for highly concurrent databases, timestamp @ R ®<® ®
ordering protocols are an attractive mechanism for distrib- W) W) (W) W) W) (W) end BST
uted concurrency control over storage devices since they
place no overhead on reads and are not susceptible to dead- end BST end BST

readModifyWrite fullStripeWrite read

locks. These protocols select an a priori order of transaction
execution using some form of timestamps and then enforcerigure 8: The composition of host operations in the optimized
that order [5]. Most database implementations verify times- timestamp ordering protocdRevread devwrite, andprewrite

tamp order each time a transaction executes an access to tf§gquests are denoted by "R, "W" and "P" nodes respectively.

- : 1“RP” denotes aread-and-prewrite request. A “B” node
database, but more optimistic variants delay all checks unt'lrepresents the commit point at the host, where the host blocks

commit tlme_ [1].)) until all preceding operations complete, restarting from the
In the simplest timestamp ordering approach, eachbeginning if any of them fail. In a two-phase write, the

transaction is tagged with a unique timestamp at the time itprewrite requests are piggy-backed on the reads. Hence, both

starts. In order to verify that reads and writes are '€@ds and two-phase writes use the minimal amount of

proceeding in timestamp order, the blocks are tagged with d"€5529Ing.

pair of timestampsits and wts, which correspond 0 the o4 ests will be rejected, causing their parent transaction

largest timestgmp of a transaction th_at r_ead_ or wrote th?BST) to be aborted and retried with a larger timestamp.
block, respectively. A read by transactidmwith timestamp As in the general case, since each device is performing a

opts(T)to blockv is accepted ibpts(T)>wts(v) otherwise itis |55 check, a write request may pass the check in some

|mr(;1ed|ately rejectﬁd. A write Is a_ccept_edo:ﬁ(tjs(T_)>wts(v) devices, but the BST may abort due to failed checks in other
?n OptS_(T)>_rtS(V)b a;n a<(:jcess IS rdejegtﬁ , 1t palrent devices. Because of the simple structure of BSTSs, splitting
ransaction is aported and restarted with a new largef,o \yrite protocol into a prewrite phase followed by a write

tlmlesta(rjnp.t id di b in which the ab hase ensures that the host has all device decisions before
n order to avoid cascading aborts, in which the abort Ofigq ing any write, allowing it to reach a commit point

one transaction causes a rippling abort of_ many Oth?r%ithout changing the contents of any storage. New
reads are not aIIowed_to access data written by aCt_'Vﬁmestamps are generated at a host by sampling a local
(uncommitted) transactions. When an active transaction -k which is loosely synchronized with the rest of the

wants to update a block, it first submits mewrite 10 qter then appending the host's unique identifier to the
storage declaring its intention to write but without actually least significant bits of the clock value

updating the data. Storage acceptsprewrite only if As an example, consider theadModifyWriteBST since
opts(T)>wts(v) and opts(T)>wts(v) When the active i onniovs the piggy-backing optimization and is of
transactioril commits, awrite is issued for each submitted ,o<onaple complexity, as shown in Figure 8. This protocol
p_re_\kljvlrlte. Onlz then u(;j the rj::w value L_deatﬁd and made; o445 data and parity in a first phase, uses this data together
visible to other readers. A transaction that issued gy the “new data” to compute the new parity, then updates

prewrite may abort, in which case itprewrites are ,h qata and parity. The BST execution starts with the host
discarded and appropriate blocked requests are unblocke@.ca”y generating a new timestamppts then sends low-

Readers are blocked behind any acfivewrite requestata |oye| devread requests to the data and parity devices,

device until the write commits or aborts. tagging each request witbpts, and bundling each request
4.5.1. Timestamp ordering for BSTsAs described above, with aprewrite request.
timestamp ordering works by having hosts independently The device receiving aread-and-prewrite request
determine a total serial order to which the effect of performs the necessary timestamp checks both for a read
concurrent execution should be equivalent. BST timestampand aprewrite, accepting the request only if both checks
ordering depends on devices capable of maintaining tagsucceed; that isppts>rts and opts>wts for each affected
and queues as described above, and on BSTs providingock. An accepted request is queued if there is an
information about that order (in the form of a timestamp) in outstandingprewrite with a lower timestamp, otherwise
each /0 request. Since I/O requests are tagged with adata is returned to the host anid is updated ifopts>rts
explicit order according to which they have to be processe&Vhen the host has received all requested data, it computes
(if at all) at each device, deadlocks cannot occur and althe new parity and sends the new data and parity in
allowed schedules are serializable. Instead, out-of-ordeflevwrites also tagged with opts The devices are
guaranteed by the acceptance of firewrite to do the

write, updatewts, and discard the correspondipgewrite activity. The use of loosely synchronized clocks and
request from the queue. The request queue is then inspectefficient timestamp management for concurrency control
to see if anyread or read-and-prewrite requests can now has been demonstrated in the Thor client-server object-
be completed. oriented database management system [1].

Under nprmal circumstances, trfengqdlny\/_nteBST 4.5.3. Performance
does not induce any overhead, just like piggy-backed

device-based locking, because reads arriving while other AS Shown in Figure 9, timestamp ordering is highly
writng BSTs are in progress is rare. We discussScalable: the average task latency for timestamp ordering

optimizations to the basic timestamp ordering protocol@nd device-served locking is only 10% higher than that of
next. which lend themselves to efficient implementation.the zero-overhead protocol. In addition, it uses the smallest
These optimizations were implemented in our simulation@Mount of messaging compared to all other protocols. It has

and the results reflect their effects. no messaging overhead on reads, and with the piggy-
o] backing optimization, it can also eliminate the messaging
4.5.2. Avoiding timestamp accesse®ur protocol requires gyerhead associated with two-phase write BSTs, resulting

each disk block be durable: read before any disk operatiopcking protocol.

and written after every disk operation. A naive
implementation might store these timestamps on disk, nea4.6. Blocking/retry behavior
the associated data. However, this would result in one extr

disk access after reading a block (to update the blatk)s fh any of the protocols, when several BSTs attempt to

d disk bef . block d haccess a conflicting range, some of them will be delayed
and one extra disk access before writing a block (to read t Gither directly on a lock, or indirectly by suffering an abort

block’s previouswts) and a retry

Doubling the number of disk accesses is not consistent The probability of delay depends in part on the level of

with our high-performance goal. Because all clocks are. o ntention. Shown in Figure 10, the fraction of BSTs

loosely synchronized a_nd message delivery latency ShouIgelayed is highest for callback locking because it has the
t.)e bounded, a device need not accept a reque%rgest window of vulnerability to conflict (lock hold time).
t!mestamped with a _vaIue much smaller than its CurrenEoth the distributed device-based protocols do better than
time. Such a_transactlon wo_uld have timed out, aborted, an entralized locking approaches because they exploit piggy-
r_estarted W'th a .Iater timestamp. Hence, per'bmd(backing of lock/ordering requests on the I/O requests,
timestamp |nformat!on older thait seconds,“ for some thereby avoiding the latency of communicating with the
vqlue toT, can_be discarded and a vaIue_ Of. current time, . server before starting the 1/0O and shortening the
minusT” used instead. Moreover, if a device is reinitiating window of vulnerability to conflict.

ager .? clraskh_ or pO\r/]ver F:yc(;eé ':c can S|mptly walt tlnTet This delay also depends on environmental factors, such
atter 1ts clock IS synchronized belore accepting requests, g aqyork reordering of messages. Reordering can cause

re.;? rd 'tﬁ mLyaI s%/nchron_:_zhed t]ime atnd retject all relqueStSéieadlocks and restarts for device-served locks, and
with earlier imestamps. ‘Theretore, imestamps only N€eqq tions and retries for timestamp ordering because

volatile storage, and only enough to record a few seconds OFJ

89.29 (] 0.5959¢.. . 160.9
: X
80| RARRN 150+
e
?.) 0.14 - - *
Y
-~ (] -
® © \) > p .
3] \ --+-- callback locking ® 1004 x” ..
1S » \ - x- server locking %] e
~ % N —a— device-served locks E x7
> e 0.01 x_ —e— timestamp ordering ~
< Q Rl N %) < .
g S) g
< 2 = x .
= e ket - 50", —-
204 - x- server locking g ’ "7~ =~ server locking
--+-- callback locking ---+-- callback locking
—a— qewce-servec(ij locks 0.001 —a— device-served locks
—e— timestamp ordering —e— timestamp ordering
o ---e-- zero-overhead protocol 0.0003613 o ---e-- zero-overhead protocol
T T T T T - T T T
500 1000 10 20 30
149.9 1350 2 100 2 32
total throughput (ops/sec) contention (%disk accessed) message latency window (msec)

Figure 9: Scalability of timestamp Figure 10: The performance of the protocolsFigure 11: Effect of the variability in
ordering compared to the locking and theunder high contention. When the hosts aremetwork message latencies on end
zero-overhead protocols. restricted to only 2% of the active portion of latency.

the disk, device-served locking suffers from

disk queues and latency growing without

bound due to timeout-induced restarts.

sibling requests are serviced in a different order at differenReferences

devices.) [1] A. Adya, R. Gruber, B. Liskov and U. Maheshwari, “Efficient
To explore the effect of reordering on the delay andgptimistic concurrency control using loosely synchronized clocks,”

latency behavior of the protocols, we conducted anProc. SIGMOD May 1995.

experiment where we changed the variability of network[2] K. Amiri, G. Gibson and R. Golding, “Scalable concurrency

message latency and measured its effect on delay arf@ntrol and recovery for shared storage arrays,” Technical Report

latency. Message latency was modeled as a uniformlfsMU'CS'gg'lll’ Carnegie Mellon University, Feb. 1999,

-] K. Amiri, “Scalable dynamic function placement in distributed
distributed random variable over a given window Slze’storage systems,” in preparation, Ph.D. Thesis, Department of

extending from 1 tav milliseconds. A larger window size E|ectrical and Computer Engineering, Carnegie Mellon University.
implies highly variable message latencies and leads to p] A. Benner, “Fibre Channel: Gigabit Communications and /0
higher probability of out-of-order message arrival. It alsofor Computer Networks,” McGraw Hill, New York, 1996.
increases the mean message latency. Figure 11 show tkfd P. Bernstein and N. Goodman, “Timestamp based algorithms
increase in average latency as the message variability @rconcurrency controlin distributed database systeRgt. 6th

. . - . LDB, Oct. 1980.
increased. Although timestamp ordering and device-base] M. Carey, M. Franklin, M. Zaharioudakis, “Fine-grained shar-

locking are sensitive to message reordering, the end effeg gin a page server OODBMSProc. 1994 SIGMODMay 1994

on host latency is less noticeable; indeed, the gap betwe_efm] W. Courtright, “A transactional approach to redundant disk
the zero-overhead protocol and these two protocols remaireray implementation,” Ph.D. dissertation, issued as Technical

approximately constant, indicating little effect from Report CMU-CS-97-141, Carnegie-Mellon Univ., Apr. 1997.

reordering. [8] K. Eswaran, J. Gray, R. Lorie and L. Traiger, “The notions of
consistency and predicate locks in a database syst&uosyim. of

[9] G. Gibson et al., “Cost-effective high-bandwidth storage archi-
Shared storage arrays enable thousands of storage devidesture,"Proc. ACM ASPLOSOct. 1998. o
to be Shared and d”'ectly accessed by end hosts Ové*o] R. Gold|ng and E. BOrOWSky, “Fault-tolerant I’ep|lcatlon man-
igement in large-scale distributed storage systeRrs¢. 18th

switched system-area networks. In such systems, conchEEE Symp. on Reliable Distributed Systeet, 1999,

rent host tasks can lead to InconS|stenC|e§ in redundan({xl] R. Golding, E. Shriver, T. Sullivan, J. Wilkes, “Attribute-man-
codes and for data read by end hosts. In this paper, we prgged storage Wkshp. on modeling and specification of |A995.
pose a novel storage-specialized transactional approach thab] J. Gray, R. Lorie, G. Putzulo, and I. Traiger, “Granularity of
enables high concurrency between access and managemémiks and degrees of consistency in a shared database,” IBM
tasks in a distributed storage system. Our approach breal@search Report RJ1654, Sep. 1975.

down the storage access and management tasks performiddl T-Haerderand A. Reuter, “Pr_inciples of Transaction-oriented
g 9 P atabase RecoveryACM Computing Surveyib(4), Dec. 1983.

by stora_lge cpntrollers mtg Slmple two-phased transactlo_ngdf] M. Holland, G. Gibson, D. Siewiorek, “Fast on-line failure
(BSTs) in which data logging is not _needpd because no dis covery in redundant disk array®toc. 23rd FTCS1993.

value is changed before the commit point. We present tw@;s) R, Horst, “TNet: A Reliable System Area NetworkEEE
distributed concurrency control protocols—device-servedvicro, Feb. 1995.

locks and timestamp ordering—that exploit intelligence in[16] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanaray-
storage devices to provide serializability for BSTs with @nan, R. Sidebotham, and M. West, “Scale and Performance in a

high scalability. These protocols use message batching arfgfStributed File System ACM TOCS5(1), Feb. 1988.
9 y P g g 7] C. Lamb, G. Landis, J. Orenstein, D. Weinreb, “The Object-

p|ggy-back|ng to reduce BST Iatgnues relative ?o centraI—StOre Database Systen€omm. of the ACMB4(10), Oct. 1991.
ized lock server protocols. In particular, both device-serveqi g| . | ee and C. Thekkath, “Petal: Distributed Virtual Disks,”
locking and timestamp ordering achieve 40% higherproc. 7th ASPLOS)ct. 1996.
throughput than server and callback locking for a small (2019] D. L. Mills, “Network time protocol: specification and imple-
device) system. Both distributed protocols exhibit superiormentation,” DARPA-internet RFC 1059, DARPA, July 1988.
scaling, falling short of the ideal protocol’s throughput by [20] R. Muntz, J. Lui, “Performance analysis of disk arrays under
only 5-10%. At very high contention, timestamp ordering is failure.” Proc. 16th VLDB1990.

. 1] M. O’Keefe, “Shared file systems and fibre chann@rbc.

more robust than device-served locking because it does nézih Goddard Conf. on Mass Storage Sys. and Technolatges
depend on a timeout mechanism for deadlock detection. >3] ¢ papadimitriou, “Serializability of concurrent updates,”

ACM, 26(4), Oct. 1979.
Acknowledgments.We would like to thank John Wilkes, Eliza- [23] D. Patterson, G. Gibson, and R. Katz, “A Case for Redundant
beth Borowsky, and Dave Anderson for their valuable feedbackArrays of Inexpensive DisksProc. ACM SIGMODJune 1988.
We are grateful to Paul Mazaitis for maintaining our cluster during[24] Seagate Technology, “Cheetah: Industry-Leading Perfor-
simulations. We are also grateful to Fay Chang, Joan Digney, theance, http://seagate.coqri997.
members of the PDL at CMU, the members of the SSP at HP lab425] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP

and our anonymous reviewers for improving the clarity of the pre-AUutoRAID hierarchical storage systenACM Trans. on Computer
sentation Systemsvol. 14, no. 1, Feb. 1996.

