
The Palladio access protocol

Richard Golding

HPL{SSP{99{2
1 November 1999

Abstract

This document presents the Palladio access protocol, which provides

for reading and writing data on multiple devices.
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1 Assumptions

� We are assuming a synchronous system, where processors execute at a
rate bounded both above and below and where message delivery|if it
happens|occurs in a bounded time.

� Network nodes have loosely-synchronized clocks.

� Timestamps derived from clocks are of su�cient resolution that no two
timestamps derived on the same host will have the same value. The actual
timestamp includes the host id appended to the clock value, so that each
draw of a timestamp from a clock is unique over all time and all nodes in
the system.

2 Constants

� �: maximum clock drift

� �to: a timeout value. When an operation has been on a chunk's operation
queue longer than �to, the chunk presumes that a host has crashed and not
committed a write and therefore gets a manager to reconcile that block.

� �ml: a timeout value to detect probable message loss.

3 Players

The host and chunk are the primary players in the access protocol. Managers
play an incidental role: they control aspects of host and chunk behavior through
the layout control protocol. Chunks can also request managers to perform rec-
onciliation, again through the LCP.

4 Interfaces

There are interfaces between the access protocol and two other protocols.
With the layout control protocol. This interface is in the chunk. A chunk

doesn't serve data when it has no lease. The access protocol makes use of
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the chunk's size, and of the epoch number, which are set by the LCP. Finally,
chunks involved in the access protocol can use the LCP to ask their manager to
reconcile data that may have gotten out of sync.

With the layout retrieval protocol. The host can request a refresh of its
layout cache, and the access protocol uses the layout and epoch number it gets
from the LRP in generating low-level messages.

5 Hosts

5.1 External operations

There are three events that can be injected from the outside:

� read(block): reads one block from the store.

� write(block,value): writes one block to the store.

� fail: the host fails.

There are two events that can be provided to the outside:

� readresp(block,value,status): a read has completed; this is the result. Sta-
tus is either complete or failed.

� writeresp(block,status): a write has completed; this is the result. Status
is either complete or failed.

The sequence of interleavings of these �ve events is restricted in a correct
execution of the system. Informally, an execution is correct i� the following
properties hold:

� (FIFO per host) For a single host, the readresp and writeresp events for
a particular block are in the same order as the corresponding read and
write events, as long as failures don't occur.

� (Bounded response, fairness) Any read or write request completes within a
bounded time, either by there being a corresponding readresp or writeresp,
or by there being a fail event that matches all unresponded reads and
writes on that host.

� (Single-copy serializability) Across hosts, there is a global serialization of
operations such that each read returns the value of the preceding write for
that block in the serialization order.

Note that the FIFO condition is per-block, not over all blocks: requests for
di�erent blocks may be reordered arbitrarily. The �nite-response-time condition
means that it is possible to construct a barrier in the execution sequence by
allowing the request queue to drain before issuing new requests. This could be
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improved by adding additional ordering indications to the request events, and
accounting for this in the ordering conditions; this is an extension for later.

Note also that this model does not allow for multi-block atomicity; this is
an extension for later.

The status values that can be returned on a read or write response are OK
and FAIL. An OK value means that the operation de�nitely succeeded. On a
write, in particular, this means that the data in the write have been persistently
recorded to storage (barring excessive failure.) A FAIL value means, on a read,
that the data returned is invalid. A FAIL on a write means that the data may
or may not have been written. A well-designed, properly-functioning system
will generate few false failures but there will always be some. These semantics
are the same as on current disks and disk arrays. This design decision was made
because providing stronger meanings for a FAIL result would require the use of
heavyweight consensus mechanisms on every I/O.

5.2 General structure

The host side generally consists of two parts: the �rst receives and queues up
operations as they are requested; the second takes operations from that queue
one at a time and issues low-level read and write requests to chunks. In this way
the processing of requests is decoupled from, and occurs asynchronously with,
the outside application issuing requests.

chunks

input req receiver op queue execution result

The execution machine in the host uses two BSTs [Amiri99], or patterns
of message passing, to perform high-level reads and writes. The patterns are
encoded in the execution engine's state transitions.

commit

host read

read

readresp

host readresp

host write

prewrite

prewrite ack

host writeresp

5.3 State

All state on the host is transient: it is lost on failure.
The following state is shared among all parts of a host:
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variable type use
clock time a clock that is synchro-

nized to within some
global � of all other
clocks in the system.

The following de�ne the interface between the receiver and execution ma-
chines:

variable type use
opqueue queue of op = (type,

block, value, sender)
queue of operations that have
been requested from the outside
but not yet processed; initially
empty

The following de�ne the state of the execution machine:
variable type use
currop op = (type, block,

value, sender); type is
none, read, or write

the current operation, if any; ini-
tially none

currts timestamp the timestamp of the current op-
eration; initially 0

resultokay boolean whether the result is okay or not
resultrestart boolean if resultokay is false, whether the

operation should be restarted or
not

resultvalue value the value to be returned
outstanding (chunk, block) a set of physical blocks for which

some kind of reply is expected;
initially empty

The following de�ne the interface between the access protocol and the layout
retrieval protocol:

variable type use
layout layout: (block,

operation) !
(chunk,block)

a cached copy of the mapping
of block numbers to the physical
blocks in chunks that make it up;
initially empty

version epoch number the epoch number of the cached
layout information; initially -1

layout-current boolean whether the cached layout map-
ping is believed to be current or
not; initially false

5.4 Interfaces to other protocols

In the host, the access protocol interfaces only to the layout cache coherence
mechanism. The chunks provide indications of out-of-date layout version num-
bers, which cause the access protocol to use the layout retrieval protocol to
obtain a better copy of the layout. The interface is through three variables,
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layout, version, and layout-current. Layout and version are read-only to the
access protocol; layout-current can be read or set to false. To obtain a new
layout, the access protocol sets layout-current to false; this triggers the layout
retrieval protocol to obtain a new copy of the layout, changing the layout and
version variables. When the layout retrieval protocol is done, it will set the
layout-current variable to true, which is the signal that the layout data can be
used again. While the layout-current variable is false, the access protocol must
assume that the layout and version variables may change at any time and need
not be current. While the layout-current variable is true, these variables are
stable.

5.5 Receiver transitions

read(block)

An application wants to read a particular block.

op  (READ, block, null, sender)

opqueue.append(op)

write(block, value)

An application wants to write a value to a particular block.

op  (WRITE, block, value, sender)

opqueue.append(op)

5.6 Execution transitions

(currop == NONE) ^ (!opqueue.empty) ^ layout-current

The execution engine isn't busy, believes it has a current copy of the

layout, and there is an operation ready to go. Initiate the �rst stage

of the appropriate transaction.

currop  opqueue.pop

resultvalue  null

resultokay  true

resultrestart  true

currts  clock

outstanding  layout(currop.block, currop.op)

if currop.op == WRITE

foreach (chunk, block) 2 outstanding

send prewrite(block, version, currts, currop.value) to chunk

else

foreach (chunk, block) 2 outstanding

send read(block, version, currts) to chunk

set timeout to �ml
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versionmismatch(block, timestamp)

Some chunk has indicated that the host is operating with out-of-date

layout information. Set the 
ag that will cause the layout retrieval

protocol to do its thing, and set the operation up to restart.

if (timestamp == currts)

resultokay  false

outstanding  outstanding - (sender, block)

layout-current  false

error(block,timestamp)

A chunk has reported that there is a grevious error in a request.

When this happens, quit the operation.

if (timestamp == currts)

resultokay  false

resultrestart  false

outstanding  outstanding - (sender, block)

outoforder(block, timestamp)

Some chunk has indicated that an operation request has been received

out of order. Set this operation up for being restarted.

if (timestamp == currts)

resultokay  false

outstanding  outstanding - (sender, block)

timeout

Some message has not been responded-to within the �ml timeout

period. Restart the current operation.

resultokay  false

outstanding  empty

readresp(block, timestamp, value, status)

A chunk is responding with read data. Combine this with any other

data received so far.

if (timestamp == currts)

outstanding  outstanding - (sender, block)

resultvalue  F(resultvalue, value)
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(outstanding == empty) ^ (currop.op == READ)

A read transaction has collected all the responses it is going to get.

Determine the outcome of the transaction.

cancel timeout

if resultokay

send readresp(currop.block, resultvalue, OK) to currop.sender

else

if resultrestart

opqueue.prepend(currop)

else

send readresp(currop.block, null, FAIL) to currop.sender

currop  NONE

currts  0

prewriteack(block, timestamp)

A chunk is responding that it has received a prewrite. Once all

prewrites have been acknowledged, commit the write.

if (timestamp == currts)

outstanding  outstanding - (sender, block)

(outstanding == empty) ^ (currop.op == WRITE)

A write transaction has collected all the responses it is going to

get. Determine the outcome of the transaction: if all acks have been

received, commit the data, otherwise abort the prewrites and try to

restart if possible; otherwise just return failure.

cancel timeout

if resultokay

foreach (chunk, block) 2 layout(currop.block)

send commit(block, version, currts) to chunk

send writeresp(currop.block, OK) to currop.sender

else

foreach (chunk, block) 2 layout(currop.block)

send abort(block, version, currts) to chunk

if resultrestart

opqueue.prepend(currop)

else

send writeresp(currop.block, FAIL) to currop.sender

currop  NONE

currts  0
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5.7 Extensions

Dealing with message loss. The current version of protocol will retry an
operation forever. A more appropriate approach would be to retry up to a �xed
number of times. This can be done by including a retry-count value in the
opqueue and currop structures. This would be initialized to zero in the read()
and write() transitions in the receiver, and incremented in the read and write
�nalization code (when the currop is put back on the operation queue.)

Host failure and recovery. The model as presented does not provide a way
for hosts to fail and recover. This can be added by having a \functioning" state
variable, predicating all existing transitions and that variable, and adding fail
and recover transitions to change that variable.

Multiple outstanding operations. The engine currently only allows one
(high-level) operation to be in process for any host. In practice this is needlessly
restrictive, and standard techniques for having multiple outstanding operations
in disk device drivers can be applied here. For example, any two operations
that do not overlap could proceed concurrently. Alternately, read and write
requests could be amended to include parallelization constraints and any ready
operation could be executed.

This would necessitate changes to the receiver machine, to put more informa-
tion in the operation queue. It would require extensive changes to the execution
engine, to track more than one operation.

6 Chunks

6.1 General structure

The chunk portion of the access protocol processes read, prewrite, and commit
requests coming from hosts. It depends on the layout control protocol to dictate
when it can act, and when it can't. It is purely reactive.

It consists of two machines: one that receives requests from hosts (read,
prewrite, commit, and abort messages), checks their basic validity, and places
them in the appropriate queue. The second machine takes operations that are
ready to be executed (e.g. committed writes, reads with no preceding prewrites)
out of the queue(s) and executes them.

Because of the drift in clocks and message latency variability, chunks cannot
simply apply operations in the order they are received and still get consistent
serialization in timestamp order. To ensure the proper order:

� each chunk keeps track of the timestamp of the last read and write oper-
ations applied to each block.

� when trying to apply a read with a timestamp before the last write, or
a write with a timestamp before the last read or write, the chunk rejects
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the operation as out of order. This means that writes are strictly ordered
with respect to other operations, but reads of data from the same write
are arbitrarily interchangeable.

� when operations must be queued behind uncommitted writes, the opera-
tions are kept in timestamp order.

� When processing an operation at the head of the queue, the operation's
timestamp must fall in the gap between the max(RTS,WTS) and the oldest
operation in the queue.

timestamp

RTS
gap

WTS

RR RRPW CW

The current model puts all operations on the queue, so it is only necessary to
check against the RTS and WTS. This di�ers from the explanation in [Amiri99],
which tries to optimize the case when an operation does not need to be queued.

The chunk, as far as the access protocol is concerned, operates in one of four
states. The normal state occurs when the chunk has a lease and can serve data.
The chunk moves to a nolease state when it loses a lease, or during an epoch
transition. It moves back to normal state when an epoch transition commits
and the chunk is issued a new lease. Failures can occur in both the normal
and nolease states, moving the chunk to the failed state. When the chunk
recovers, it enters the nolease state.

failed

nolease

recover

normal

fail

lose lease
epoch trans

fail

get lease
epoch commit

nochunk

delete

anything

When a chunk is deleted, as part of an epoch transition or by a manager
while the chunk is attempting recovery, the chunk goes away. We model the
absence of a chunk by the nochunk state, which speci�es what the device will
do when requests are made on a chunk that doesn't exist.
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6.2 State

Some state variables are persistent; other variables are not.
variable type use

clock time a clock that is synchronized to
within some global � of all other
clocks in the system.

state one of failed, normal,
nolease, or nochunk

the overall state of the chunk; ini-
tially nolease

The interface to the layout control protocol is:
variable type use
haslease bool whether the chunk has a regular lease, and

so can serve requests. Set asynchronously
by the layout control protocol. Transient.

version epoch number the current epoch number; set by the lay-
out control protocol; stable while haslease
is true.

length count number of blocks in the chunk; set by
the layout control protocol; stable while
haslease is true. Persistent.

needreconciling set of block a set of blocks that are believed to be in
need of reconciliation. This set is added-
to by the access protocol and decreased by
the LCP, when the chunk uses the LCP
to contact a manager to initiate reconcil-
iation. Initially empty; transient.

Persistent data storage is:
variable type use
blocks[b] array [0..length-1] of value the data storage

rts[b] array [0..length-1] of timestamp the time of last read for
each block

wts[b] array [0..length-1] of timestamp the time of last write for
each block

Transient data is:
variable type use

opqueue[b] array [0..length-1] of pri-
ority queue of (op, ready,
block, version, timestamp,
value, sender) ordered by
timestamp

for each block, a priority
queue of pending read and
prewrite operations. Sup-
ports a mints operation
that returns the minimum
timestamp in the queue, or
+in�nity if it is empty. Ini-
tially empty.
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6.3 Interfaces to other protocols

The access protocol in the chunk interfaces only with the layout control protocol,
via the haslease and related variables. The access protocol is solely reactive to
the LCP: when the LCP sets the haslease variable to true, the access protocol
proceeds; when the LCP sets the variable to false, the access protocol ignores
all events.

The chunk can request that the manager initiate reconciliation for a par-
ticular block by adding that block to a \needreconciling" set. Chunks do not
directly initiate reconciliation because they aren't supposed to treat the layout
metadata as opaque, which implies they don't know what other chunks would
need to be involved.

6.4 General transitions

fail ^ state 6= nochunk

The chunk is failing.

state  failed

recover ^ state == failed

The chunk is recovering after a failure. Note that the layout control

protocol will be making a similar transition in parallel with this one,

which will re-establish the variables that de�ne the interface between

the two protocols.

needreconciling  empty

for each b,
opqueue[b]  empty

state  nolease

haslease == false ^ state == normal

The chunk has lost its lease.

state  nolease

haslease == true ^ state == nolease

The chunk has gotten a new lease.

state  normal
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delete

The chunk is being deleted. This is actually triggered by the layout

control protocol. The main �nalization needed is to send a version

mismatch notice on any reads that are outstanding, which will trig-

ger the reading host to retry the read on another copy of the data.

Note that it is not incorrect to not send this message, since the host

will eventually time out and retry the message anyway; sending the

version mismatch notice will simply speed things up.

for each b
for each operation (READ, true, block, version,

opts, null, sender) in opqueue[b]
send versionmismatch(block, opts) to sender

state  nochunk

state == nochunk ^ read(block, hversion, opts)

The host is requesting a data read on a nonexistent chunk.

send versionmismatch(block, opts) to sender

state == nochunk ^ prewrite(block, hversion, opts, value)

The host is requesting a data write on a nonexistent chunk.

send versionmismatch(block, opts) to sender

Note that other messages received while in the nochunk state are ignored.

6.5 Receiver machine transitions

Note that all these transitions implicitly include \^ state == normal".

read(block, hversion, opts)

The host is requesting that data be read.

if (hversion != version)

send versionmismatch(block, opts) to sender

elseif ((0 > block) or (block >= length))

send error(block, opts) to sender

elseif (opts < wts[block])

send outoforder(block, opts) to sender

else

opqueue[block].append (READ, true, block, hversion, opts, null, sender)
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prewrite(block, hversion, opts, value)

The host is indicating is trying to begin a write; either a commit or

abort with a matching opts will follow.

if (hversion != version)

send versionmismatch(block, opts) to sender

elseif ((0 > block) or (block >= length))

send error(block, opts) to sender

elseif (opts < wts[block]) or (opts < rts[block])

send outoforder(block, opts) to sender

else

opqueue[block].append (WRITE, false, block, hversion, opts, value, sender)

send prewriteack(block, opts) to sender

abort(block, hversion, opts)

The host is aborting a previously-issued prewrite.

op  opqueue[block].lookup(opts)

if (op != null) ^ (op.operation == WRITE)

op.operation  ABORT

op.ready  true

commit(block, hversion, opts)

The host is aborting a previously-issued prewrite.

op  opqueue[block].lookup(opts)

if (op != null) ^ (op.operation == WRITE)

op.operation  COMMIT

op.ready  true

6.6 Execution machine transitions

Note that all these transitions implicitly include \^ state == normal".

opqueue[b].notempty ^ opqueue[b].head.ready ^ (opqueue[b].head.op
== READ)

Execute a ready read operation, for some block b.
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op  opqueue[b].pop

if (op.timestamp < wts[block])

send outoforder(b, op.timestamp) to sender

else

value  blocks[block]

rts[b]  max(rts[b], op.timestamp)

send readresp(op.block, op.timestamp, value, OK) to op.sender

opqueue[b].notempty ^ opqueue[b].head.ready ^ (opqueue[b].head.op
== COMMIT)

Execute a committed write operation, for some block b.

op  opqueue[b].pop

blocks[b]  op.value

wts[b]  max(wts[b], op.timestamp)

opqueue[b].notempty ^ opqueue[b].head.ready ^ (opqueue[b].head.op
== ABORT)

Remove an aborted write operation from the queue.

op  opqueue[b].pop

opqueue[b].notempty ^ not opqueue[b].head.ready ^ ((clock - opqueue[b].head.timestamp)
> �to)

Some operation has timed out. Note that in the IOA model this

action could �re in�nitely often until the problem is reconciled. A

real implementation should be more selective.

needreconciling  needreconciling [ fbg

6.7 Extensions

Separating data transmission from control. As written, the data to be
written is transmitted as part of the prewrite request. This is di�erent from the
protocol in [Amiri99], which transmits the data on the commit. This change is
done to ensure that writes are properly recoverable on host failure. However,
this has two drawbacks: �rst, if the prewrite is rejected, the data transmission
is waste; second, this makes it hard for the chunk to control the 
ow of bulk
data transmission.

A solution to this is to make writes three-phase rather than two: the �rst
phase is a dataless prewrite and a response from the device when it is ready
to accept the data. The second phase is purely data transmission, followed by
an acknowledgment. The third phase is a dataless commit, followed by an ack.
(This is inspired by the decoupling of command and data transfer in SCSI.)
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Inter-block operation scheduling. As currently written, all operations only
involve a single block, and the order of service is arbitrary when multiple op-
erations, at multiple blocks, are concurrently ready. Traditional disk and array
operation scheduling would apply here.

Multiblock writes. The current protocol model does not allow for serializa-
tion between operations on multiple blocks. There are several semantics for
multiblock writes, each requiring its own extension to the protocol. These in-
clude:

� multiblock writes consisting of n sequential blocks in the virtual address
space;

� an arbitrary mix of block in the virtual address space; or

� explicit dependency relations among multiple separate write (and possibly
read) operations.

If the host is supporting explicit inter-operation dependencies, it is probably
useful to have the chunk support them as well. This might get the maximal pos-
sible parallelism out of the chunks, rather than having hosts reduce parallelism
in order to avoid potential races among multiple hosts.

Opqueue persistence. As written, the opqueue is lost when a device fails.
When the device recovers, the layout control protocol ensure that the recon-
ciliation protocol is executed before the chunk is allowed to serve data again,
which will update any committed writes that the chunk has lost|if a mirror
copy is available. In general, handling n individual concurrent transient failures
requires n+1 transient copies of the data. Alternately, a single persistent copy
of the opqueue, to capture committed writes that have not yet been applied to
the main persistent block store, will do the job. (Note that mass power failure
amounts to all chunks getting a transient failure, so having at least one per-
sistent copy of the opqueue is probably worth having.) This could be done in
two di�erent ways: by making the chunk's opqueue persistent, or by creating
a lightweight \log chunk" that doesn't have a persistent block store, but only
a persistent copy of the opqueue. If MRAM becomes widely available, it may
make an e�ective medium for storing a persistent opqueue.

Multiple opqueues. Reserving space for one opqueue for every block is too
expensive for actual implementation. There is engineering work to be done in
condensing these multiple queues into a more e�cient data structure.

Timestamp writebacks. [Amiri99] notes there are ways to optimize out the
overhead of making the RTS and WTS data persistent.
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Messages while without a lease. At present any read, prewrite, abort,
and commit messages that are received while the chunk is without a lease are
ignored. This can be improved by sending negative acknowledgments back to
the sender, indicating that the chunk is temporarily blocked. A host could use
this to adjust the period at which it retries an operation (for example, no write
will succeed while even one chunk is blocked), or allow it to give up on the
operation without having to wait a full timeout period.

7 Correctness

In this section we argue several correctness properties of the access protocol.

7.1 One-copy serialization

To show serialization, we must show that:

1. no two chunks process a pair of write operations in di�erent orders; and

2. for any pair of read and write operations, all chunks either process the
read �rst or the write �rst.

That is, reads are serialized with respect to writes, and writes are mutually
serialized, but reads of the same data can be processed in any order. This is well
known to produce a result equivalent to a one-copy serialization [ElAbaddi89].

Note that this argument is relative to a single block in a store, since the
protocol as presently written only allows operations on single blocks. This
simpli�es the con
ict and ordering constraints considerably.

7.1.1 Notation

� The set of chunks storing the block in question is C.

� Operations are denoted ox. An operation is either a read or a write.

� An operation causes the host to make a series of attempts to perform the
operation. Each attempt gets a new timestamp. Generally, all the at-
tempts but the last fail; however, in practice on rare occasions more than
one attempt to perform the operation will succeed. (For example, consider
a prewrite that reaches all chunks just before a partition happens. The
host will not receive acks, so will time out and try to abort the write; how-
ever, being partitioned, the aborts will not take e�ect. The chunks will
eventually initiate recovery, which will run reconciliation, which will com-
mit the write since all chunks received the appropriate prewrite. However,
the host will still be trying to perform the write, and once the partition is
repaired the host may try again and succeed.)

� The jth attempt for operation oi involves a set of chunks Cij � C.
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� The jth attempt for operation oi will, in the absence of any failures, cause
a set of actions acij ; d 2 Cij . Each action is either a read, a committed
prewrite, or an aborted prewrite. When it is clear from context we may
omit one or more of the subscripts on an action.

� The sequence of actions a1; a2; : : : ; an performed at a chunk is the his-

tory at that chunk. This sequence is totally ordered, since the chunk's
implementation only processes as single action at a time. For any action
ai, there are two well-de�ned sets pred(ai) and succ(ai), de�ning those
actions that precede (respectively, follow) ai in the chunk's history.

� The timestamp associated with an action a is written ts(a).

7.1.2 Mutual write serialization with no failures

At this point, we consider only systems that do not experience failures.

Lemma 1 Chunks perform committed write actions for a single block in strict

timestamp order. That is, for any two committed write actions ai and aj , i 6= j,
ai 2 pred(aj)) ts(ai) < ts(aj).

Proof: Proof by induction over the sequence of actions a0; a1; : : : ; aj . Note
that we are only considering committed write actions at a chunk c, ignoring
read and aborted write actions.

Base case: immediately before executing the �rst action, a0, wts = 0 and the
opqueue contains some set of actions. Since the opqueue is ordered by ts(a),
ts(a0) must be less than ts(ak), for the remaining ak in the opqueue. After
executing a0, wts = ts(a0) and a0 has been removed from the opqueue. Thus
8a 2 opqueue; ts(a) > wts = ts(a0).

Induction step: The next action related to writes will either be the receipt
of another action ak, or the execution of some operation ak in the opqueue. On
receipt of ak, the action is rejected if ts(ak) < wts; otherwise, ak is added to
the opqueue. This preserves the condition 8a 2 opqueue; ts(a) > wts. When
ak is selected for execution, it must be the action with the least timestamp in
the opqueue, so afterwards the condition still holds.

Thus a0; a1; : : : ; an are executed in increasing timestamp order, so ai 2
pred(aj)) ts(ai) < ts(aj).

Note that this lemma does not address the fairness of execution; only that
those actions that are executed are done so in timestamp order.

Lemma 2 9ts:t:8c 2 Cij ; ts(acij) = t. That is, all actions acij associated with

the jth attempt of operation oi have the same timestamp.

Proof: In the �rst transition of Section 5.6, the host draws a fresh timestamp
for each attempt and sends the same timestamp to all chunks c 2 Cij . The
network does not modify this value in transit. Chunks receive this timestamp
and do not modify it, so the timestamp associated with every action is the one
drawn by the host when the attempt begins.
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Theorem 1 For any two operations oi and oj , i 6= j, the associated write action

at every chunk a�ected by both operations is performed in the same order. That

is, either 8c 2 (Ci \ Cj); aci 2 pred(acj) or 8c 2 (Ci \ Cj); aci 2 succ(acj).

Proof: By contradiction. Assume that there is some chunk c 2 (Ci\Cj) s.t.
aci 2 succ(acj) and some chunk d 2 (Ci\Cj) s.t. adi 2 pred(adj). By Lemma 1,
ts(aci) > ts(acj). By Lemma 2, this implies ts(adi) = ts(aci) > ts(acj) =
ts(adj). However, by Lemma 1, ts(adi) < ts(adj), which is a contradiction.
Thus there can be no such pair of chunks c and d.

7.1.3 Read-write serialization with no failures

To show that reads and writes are mutually serialized, we extend the results in
the previous section concerning writes.

Chunks alternate between performing a committed write action and a set
of read actions, for a single block at a single chunk, with the timestamp of the
write less than the timestamps of all reads in the following set of reads and
greater than the timestamps of all reads in the preceding set of reads. More
formally:

Lemma 3 For any pair of read and write actions ar and aw, ar 2 pred(aw))
ts(ar) < ts(aw), and ar 2 succ(aw)) ts(ar) > ts(aw).

Proof: Case 1: ar 2 pred(aw). Consider the values of rts for the block.
After the execution of ar, rts � ts(ar), since rts is only updated in the pro-
cessing of a read, and then to the max of the previous rts and ts(ar). At the
time of executing ar, there are two cases for action aw. In the �rst case, it would
have already have been received by the chunk and been placed in the opqueue,
and since the opqueue is ordered by ts(a), ts(aw) > ts(ar). In the second case,
the chunk receives aw sometime after executing ar. On receipt, the write aw is
rejected if ts(aw) < rts; thus for any aw 2 succ(ar), ts(aw) > rts � ts(ar).
Thus ar 2 pred(aw)) ts(ar) < ts(aw).

Case 2: ar 2 succ(aw). This case is similar to the previous case, exchanging
read for write. Consider the value of wts for the block. After the execution of
aw, wts � ts(aw). Immediately after executing aw, either ar is in the opqueue,
implying that ts(ar) > ts(aw), or ar has yet to be received at the chunk. When
ar is received, it is rejected if ts(ar) < wts, and so for any ar that is executed,
ts(ar) > wts � ts(aw). Thus ar 2 succ(aw)) ts(ar) > ts(aw).

Theorem 2 For any two operations or and ow, the associated actions at every

chunk a�ected by both operations is performed in the same order. That is, either

8c 2 (Cr \ Cw); acr 2 pred(acw) or 8c 2 (Cr \ Cw); acr 2 succ(acw).

The proof is identical to that of Theorem 1.
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7.1.4 Extending serialization for failures

The previous section showed that the protocol serializes writes, and reads with
respect to writes, in timestamp order in the absence of failure. This section
extends that result to show that operations are serializable in the presence of
failures, though they are not serialized in strictly timestamp order.

Theorem 3 The protocol always serializes two write operations in the same

order at all functioning chunks.

This is easy to show, since chunks are strict about processing writes in strict
timestamp order at all times.

Serializability of reads with respect to writes is a little more involved. We
want to show that there is no disagreement in the reads-from relation: if one
chunk says that read 1 reads� from write 2, then no chunk should say that a
later read 2 reads� from some earlier write.

Note that this is weaker than saying that all chunks serialize actions in the
same way, since some chunks may not process an action associated with one
of the operations, either because of failure or because the chunk simply wasn't
involved (for example, in a read).

Theorem 4 For any two reads ac1 and ad2, ts(ac1) < ts(ad2), if write acw 2
pred(ac1), then 6 9d s.t adw 2 succ(ad2).

Proof: By contradiction.
By Lemma 4, below, if acw commits on chunk c, the matching action adw on

chunk d will also commit, and ts(acw) = ts(adw). On chunk c, ts(ac1) > ts(acw)
since any individual chunk is strict about ordering reads wrt writes. Likewise
ts(ad2) < ts(adw). This implies that ts(ad2) < ts(adw) = ts(acw) < ts(ac1),
which is a contradiction.

Note that this result does admit the possibility of a read with timestamp
greater than that of a write, but where the read is serialized before the write.
Consider chunk c, which receives a read request with timestamp t1. Chunk c
responds to the read, then crashes. Just after c crashes, some host sends a
prewrite message with t2 < t1 due to clock drift, and all chunks except c receive
the message. Some time later an epoch transition occurs, removing chunk c
from the layout and then running the reconciliation protocol. The prewrite will
commit, since all chunks in the new layout have received it, but its timestamp
will be less than the read at c, which re
ected data before the write but had a
later timestamp.

Lemma 4 In the absence of permanent failure, for a write operation ow, if any
associated write action acw at any chunk commits, all associated write actions

will commit. That is, 9c 2 Cw s.t. acw commits ) 8d 2 Cw, adw commits.

Proof: In the absence of failure, the only way for a prewrite action in chunk
c's opqueue to commit is for a host to send a commit message to the appropriate
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chunk. The host only sends a commit once it has received an acknowledgment
from every chunk involved in the write, which implies that there is a prewrite
action in every chunk's opqueue, and that the host has sent commit messages
to every chunk. Thus in the absence of failure, every chunk will have received a
commit message for the prewrite and will thus have committed the action.

If there is some transient failure, then the host may time out and give up on
the write, leaving the chunks in an inconsistent state. However, if some some
functioning chunk does not have a copy of the prewrite, then no chunk will have
committed since there must be a chain of causality from all chunks receiving the
prewrite to the host issuing the commit. Likewise, if any chunk has received a
commit, then there is a causal chain to all chunks receiving the prewrite. This
leaves the chunks in one of three states, which the reconciliation protocol will
use to drive the system to consistency:

� At least one has not received prewrite, and none have committed. The
reconciliation protocol will abort those prewrites that have been received.

� All have received prewrite, but none have committed. The reconciliation
protocol will commit the prewrites.

� All have received prewrite, and at least one has committed. The rec-
onciliation protocol will commit those prewrites that have not yet been
committed.

Thus in all cases where at least one chunk commits, all functioning chunks
commit.

The key idea in serialization in this protocol is that the universality of com-
mits forms a kind of interlock among the execution sequences at each chunk, and
serialization is built on top of this interlock. When it doesn't exist, which can
happen during epoch transitions, serialization in timestamp order is lost|but
serializability remains intact. This implies that applications must not be able
to see the timestamps used internally to order operations, lest they be tempted
to try to deduce whether a write has committed or not.

7.2 Liveness

The access protocol is free of deadlock, as follows. The timestamps attached
to each action sent to chunks partition the actions into a set of equivalence
classes, and induce a total ordering on the equivalence classes. Within a chunk,
an action can only be blocked on actions ahead of it in the opqueue, which
have lesser timestamps and are therefore in lesser equivalence classes. Within
an equivalence class, the only way blocking is possible is if at least one of the
actions in the equivalence class is an uncommitted prewrite. Prewrites do not
dependencies on each other; only on the host that initiated the write, or if that
fails, on the completion of a reconciliation procedure to either commit or abort
any prewrites in the class. Thus circular dependencies cannot be formed, and
deadlock will not occur.
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Note, however, that this does not guarantee unbounded waiting on any par-
ticular action. If hosts can execute arbitrarily fast, and timestamps are taken
from a continuous domain, then it is easy to construct an in�nitely-delayed
write:

1. Host 1 sends a prewrite with timestamp t.

2. Host 2 repeatedly sends a read n with timestamp t� (1=n).

Host 2 will be able to generate an in�nite amount of tra�c that will be sequenced
before Host 1's prewrite. However, the host must be able to execute arbitrarily
fast for this to occur. If there is a bound on processor rates, or equivalently,
timestamps are taken from a discrete domain, then no processor can insert more
than a bounded number of actions in a chunk's opqueue ahead of any other
processor's action, and with a bounded population of hosts one can establish an
upper bound on the time before any arbitrary action will be executed.

7.3 Meeting interface requirements

The access protocol has interfaces with three other protocols: layout control,
layout retrieval, and reconciliation. We ignore reconciliation here, deferring that
to the document on that protocol.

The interface with the layout control protocol requires that the chunk not
process operations when it does not have a lease. This is accomplished by
conditioning all the transitions in Sections 6.5 and 6.6 on the presence of a valid
lease. Any read, prewrite, commit, or abort messages received while there is no
valid lease are ignored, and no action is executed. This may cause a host to
time out and make another attempt to complete the operation { but the chunk
that has lost its lease will remain correctly stopped. Note that this behavior
can be improved, as noted in Section 6.7.

Chunks provide support for consistency control of hosts' cached metadata
copies by checking the version number sent in read and prewrite messages
against the chunk's current version (epoch) number, and only accepting mes-
sages with the correct version. However, there may be some time between
accepting the message and actually executing the associated action { a read can
sit in the opqueue for a while, and a prewrite needs a matching commit message.
The check is not repeated when execution time comes along. This is acceptable,
as follows:

� For a read action, when the version number changes, then either the chunk
is remaining in the layout or it is being removed. If it remains in the layout,
by the end of the epoch transition in which the version number is changed,
the chunk will have a consistent copy of the block and can properly execute
the read action. If the chunk is being removed from the layout, it rejects
all reads in the opqueue by sending version mismatch messages.

� For a committed write, when the version number changes, the data should
still be written to permanent store.
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� For an uncommitted prewrite, the reconciliation process that accompa-
nies the epoch transition that changes the version number will determine
whether the prewrite should be committed or aborted, and so no uncom-
mitted prewrites will survive into the new epoch.
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